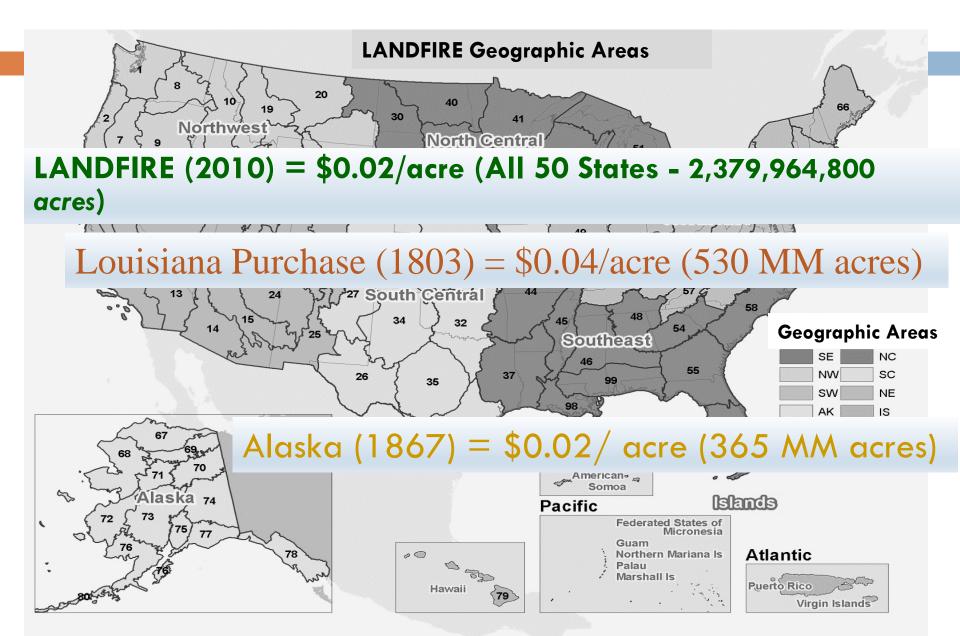


www.landfire.gov

LANDFIRE Program After Action Review and Scoping Workshop Virtual Webinar

- Foundational Data
- Vegetation Data
- Fire Modeling Data

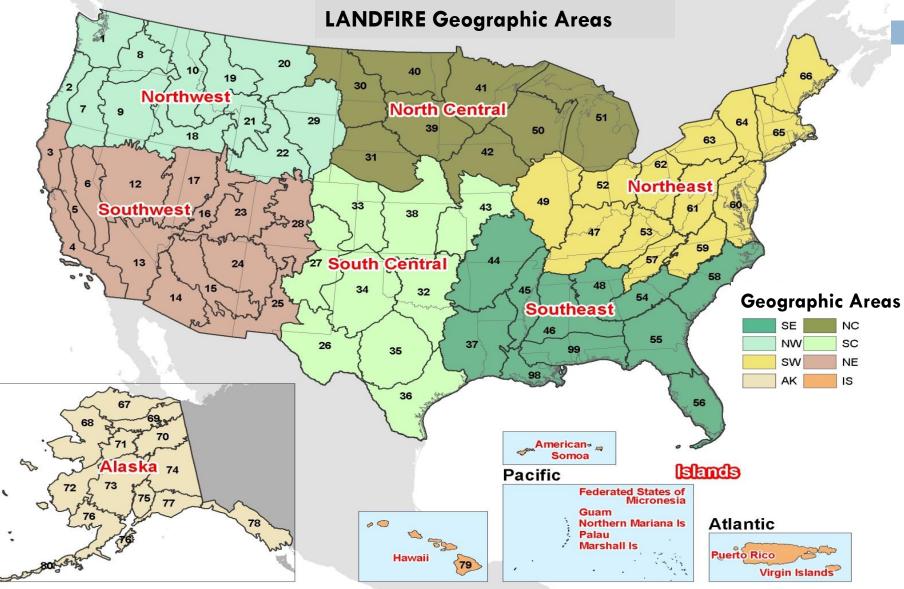


December 16, 2014

LANDFIRE Workshops

August - 2014: Missoula, MT
September - 2014: Denver, CO
October - 2014: Boise, ID
Nov/Dec - 2014: Sioux Falls, SD
December - 2014: Virtual Webinar

LANDEIRE – Data for All Lands



LANDEIRE – Data for All Lands

http://www.landfire.gov/library_guidelines.php Scale

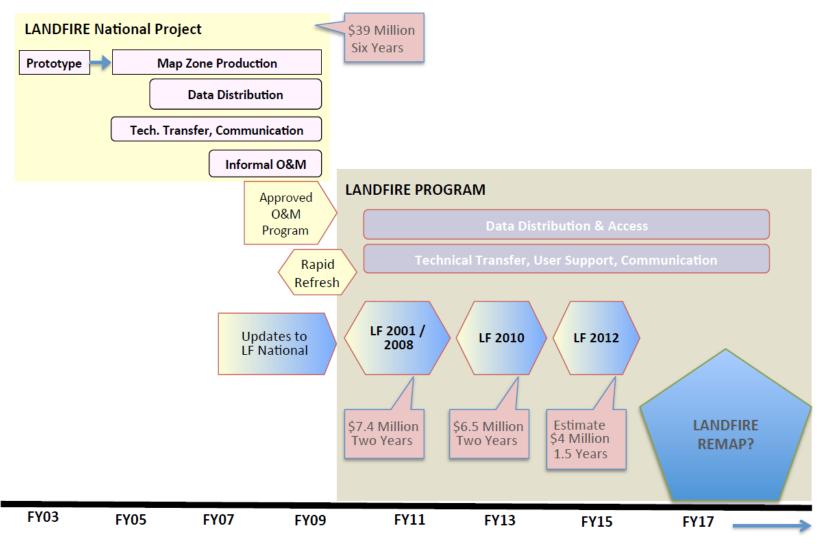
LANDFIRE

Workshop Process

First 2 to 2 $\frac{1}{2}$ hours

- Product
 Requirements
- Product Methods
- Product Applications
- Foundational Data
- Vegetation Data
- □ Fire Modeling Data

Last hour to 1 $\frac{1}{2}$ hours


- □ 1. What was planned,
- 2. What really happened,
- [□] 3. Why did it happen,
- 4. What could be done better next time
- 5. What needs to be done in the future
- **6.** Recommendations

Map Unit Requirements

Identifiable

- from field or plot data
- Map-able
 - 30 meter resolution (Landsat)
- Scalable
 - link with existing classifications
- Model-able
 - provide required model inputs


LANDFIRE REMAP Historical and Future Context

LANDFIRE	LF National	LF 2001	LF 2008	LF 2010	LF 2012	LF 2014	LF Remap
Description	Original products	Refresh update: vegetation type, cover, height <u>w/</u> <u>Improvement</u> - Conus ^:	Refresh update: Disturbance s*, succession, fire, and fuels	Update: Vegetation, disturbances *, succession, fire, fuels, and Islands~	Update: Vegetation, disturbances *, succession, fire, fuels, and Islands~	Planning	Planning TBD
Completed	2009	2011	2011	2014	2015 Estimated	2016 Estimated	TBD 18 maybe 19
Imagery Date	1999-2003	99-03 Base	99-03 *99-2008	99-03 09-10	99-03 *11-12	99-03 Base	2013- 2015 base
Extent	Conus, AK, HI	Conus^, AK, HI	Conus, AK, HI	Conus, AK, HI & ~ Insular	Conus, AK, HI & ~ Insular Areas	Conus, AK, HI & ~ Insular	Conus, AK, HI & ~ Insular
Products	All	All	All	Majority	Majority	Majority	All - ? on
Veg. Cond. Class (VCC) – Ref. Conditions	LANDSUM (conus), {VDDT} (AK/HI)	VDDT	VDDT	(Users develop Veg Cond. Class {VCC}/FRCC)	(Users develop Veg Cond. Class {VCC}/FRCC)	???	Costs.
VCC Units	ECOMAP subsections	Hydrologic Unit Codes	HUCs				

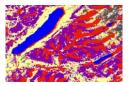
LANDFIRE

LANDFIRE – Data Products

• Reference Data

- Public point data
- Public polygon data

Landscape Change Data


- 14 Yearly Disturbance (1999-2012)
- 2 Integrated Disturbance (2008-2012)
- Transition (Type and Magnitude)
- Transition database

Vegetation Data

- LF 2012 Existing Vegetation Type
- LF 2012 Existing Vegetation Cover
- LF 2012 Existing Vegetation Height
- Environmental Site Potential
- LF 2012 Succession Class
- Biophysical Settings

Fuel Data

- LF 2012 Fire Behavior Fuel Model 40
- LF 2012 Fire Behavior Fuel Model 13
- Crown Bulk Density
- Crown Base Height
- Canopy Height
- Canopy Cover
- Fuel Loadings
 - Fuel Loading Models (FLM)
 - Fuel Characteristics Classification System (FCCS)
- Treelist (TBD)

Fire Regime – FRCC / VCC (varies by version)

Topographic

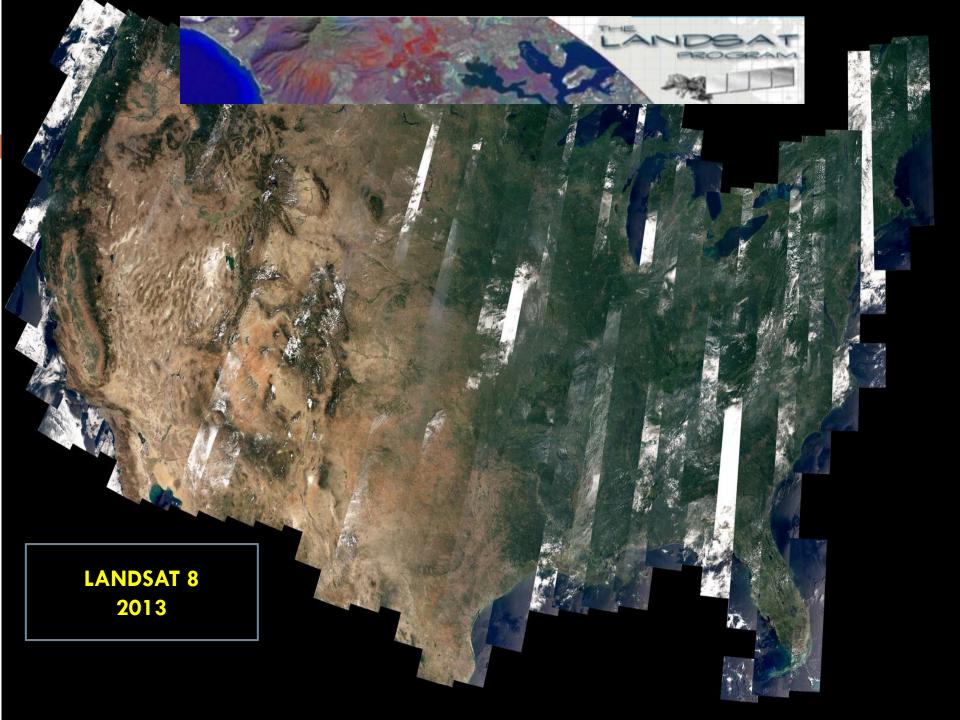
- Elevation
- Aspect
- Slope

		National (LF_1.0.0)		LF 2001 (LF_1.0.5)		LF 2008 (LF_1.1.0)		1.1.0)	LF 2010 (LF_1.2.0)					
Theme	Product Name	CONUS	AK	HI	CONUS	AK	HI	CONUS	AK	HI	CONUS	AK	HI	IA
Reference	LF Reference Database	х	х	х	х	х	х	х	х	x	х	х	x	n/a
	Events Geodatabase	n/a	n/a	n/a	n/a	n/a	n/a	х	х	x	х	х	x	n/a
	Disturbance (1999 - 2010)	n/a	n/a	n/a	n/a	n/a	n/a	х	х	х	х	х	х	n/a
Landscape	Integrated Vegetation Disturbance	n/a	n/a	n/a	n/a	n/a	n/a	x	х	x	x	х	x	n/a
Change	Integrated Fuel Disturbance	n/a	n/a	n/a	n/a	n/a	n/a	x	х	x	x	х	x	n/a
	Transition Database	n/a	n/a	n/a	n/a	n/a	n/a	x	х	n/a	x	х	n/a	n/a
	Transition Type and Magnutude	n/a	n/a	n/a	n/a	n/a	n/a	х	х	n/a	x	х	n/a	n/a
	Biophysical Settings	х	х	х	х	х	х	х	х	х	х	х	х	х
Í	Environmental Site Potential	х	х	х	n/a	n/a	n/a	n/a	n/a	n/a	x	х	x	n/a
Vegetation	Existing Vegetation Cover	x	х	х	x	х	x	x	х	x	x	х	x	х
	Existing Vegetation Height	x	х	х	x	х	x	x	х	x	x	х	x	х
	Existing Vegetation Type	x	х	х	x	х	x	x	х	x	x	х	x	x
	Forest Canopy Bulk Density	х	х	х	х	х	х	х	х	х	х	х	х	х
ĺ	Forest Canopy Base Height	x	х	х	x	х	x	x	х	x	x	х	x	х
ĺ	Forest Canopy Cover	x	х	х	x	х	x	x	х	x	x	х	x	х
	Forest Canopy Height	х	х	х	x	х	x	х	х	x	x	х	x	x
Fire Behavior	13 Anderson Fire Behavior Fuel Models	x	х	х	x	х	x	х	х	x	x	х	x	х
	40 Scott and Burgan Fire Behavior Fuel Models	x	х	х	x	х	x	х	х	x	x	х	x	х
	Canadian Forest Fire Danger Rating System	n/a	х	n/a	n/a	х	n/a	n/a	х	n/a	n/a	х	n/a	n/a
	Landscape (.LCP) file	x	х	х	x	х	x	х	х	x	x	х	x	х
Fire Effects	Fuel Characteristic Classification System Fuelbeds	х	х	n/a	х	х	х	х	х	х	n/a	n/a	n/a	n/a
2	Fuel Loading Models	x	n/a	n/a	x	х	n/a	х	х	n/a	n/a	n/a	n/a	n/a
	Fire Regime Groups	х	х	х	х	х	х	х	х	х	х	х	х	n/a
c	Mean Fire Return Interval	х	n/a	n/a	x	х	x	х	х	x	х	х	x	n/a
e	Percent Low-Severity Fire	х	n/a	n/a	х	х	x	х	х	x	х	х	x	n/a
	Percent Mixed-Severity Fire	х	n/a	n/a	x	х	х	х	х	х	x	х	x	n/a
Fire Regimes	Percent Replacement-Severity Fire	х	n/a	n/a	x	х	х	х	х	х	x	х	x	n/a
	Succession Classes	х	х	х	x	х	х	х	х	x	x	х	x	n/a
· · · · · · · · · · · · · · · · · · ·	Vegetation Condition Class	х	n/a	n/a	x	х	x	х	х	x	n/a	n/a	n/a	n/a
	Vegetation Departure Index	x	n/a	n/a	x	x	х	х	х	x	n/a	n/a	n/a	n/a
	Aspect	х	х	х	х	х	х	х	х	х	х	х	x	х
Topographic	Elevation	x	х	х	x	х	x	х	х	x	x	х	x	x
	Slope	х	х	х	x	x	х	х	х	х	x	х	x	x

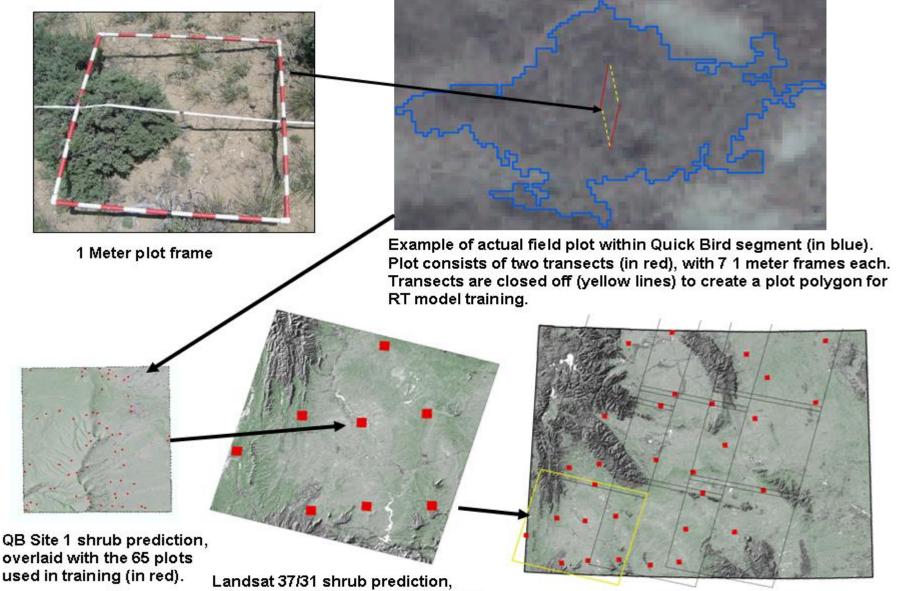
Partners - Collaboration

United States Department of Agriculture

Natural Resources Conservation Service FIA - Forest Inventory Analysis. -Memorandum of Understanding (MOU)

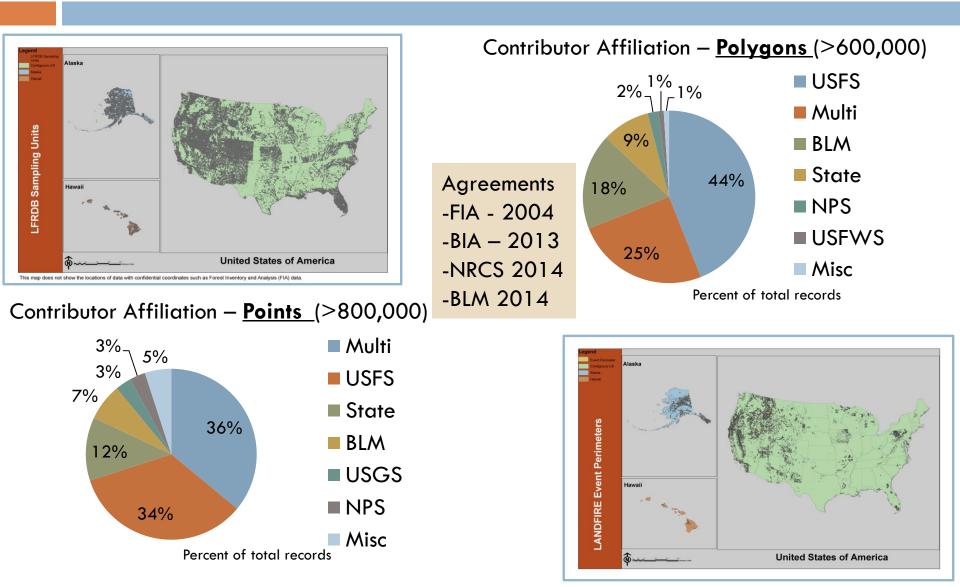

GAP and LANDFIRE - MOU 2014

NASS-National Agriculture Statistics Service -Cropland Data Layer (CDL)


NLCD-National Land Cover Database / MRLC -Multi-Resolution Land Consortium (NOAA C-CAP, EPA, RSAC, etc.)

NRCS – Natural Resource Conservation Service / NRI – National Resources Inventory: MOU in 2015

Innovations: Coordination with NLCD and BLM (Grass/Rangeland-Shrubland Stewarship)

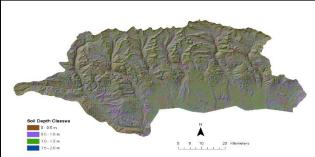


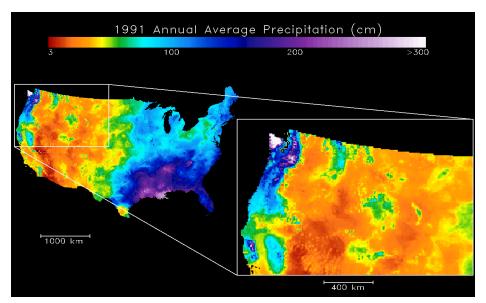
Landsat 37/31 shrub prediction, overlaid with 8 QB scenes used for training (in red) consisting of about 520 piots

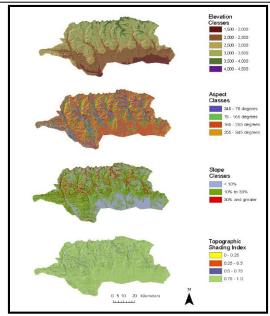
Wyoming shrub prediction overlaid with 30 QB scenes (in red) consisting of about 1,950 plots across 9 Landsat path/rows (in black) **Reference Data**

ANDFIRE

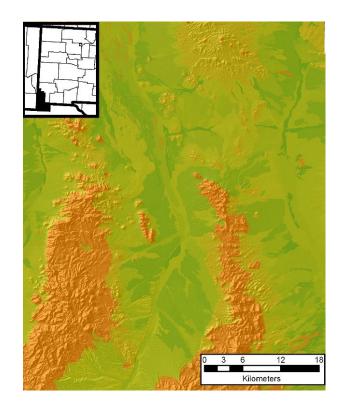
Points, Polygons, & Feedback <u>Yearly data call submission due date was</u> November 15 – Moving to January in 2015

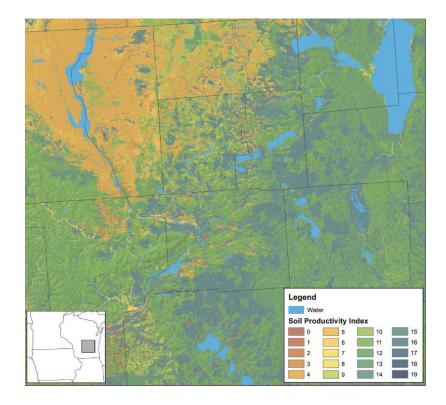



LANDFIRE Biophysical / Environmental Gradients

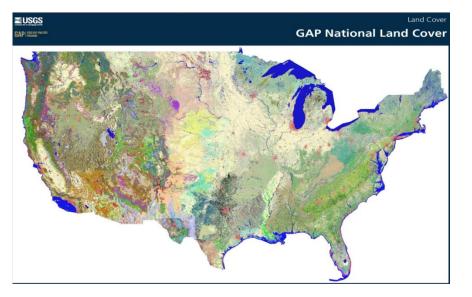

Ecosystem Simulation modelling (WX-Fire and LF-BGC)

- Soils (Statsgo and Ssurgo)
- Soil Moisture
- Daymet Weather Grid
- LAI Leaf Area Index
- Ecophysiological Site
- Topography (Slope, Aspect, Elevation - NED DEM)
- Temperature





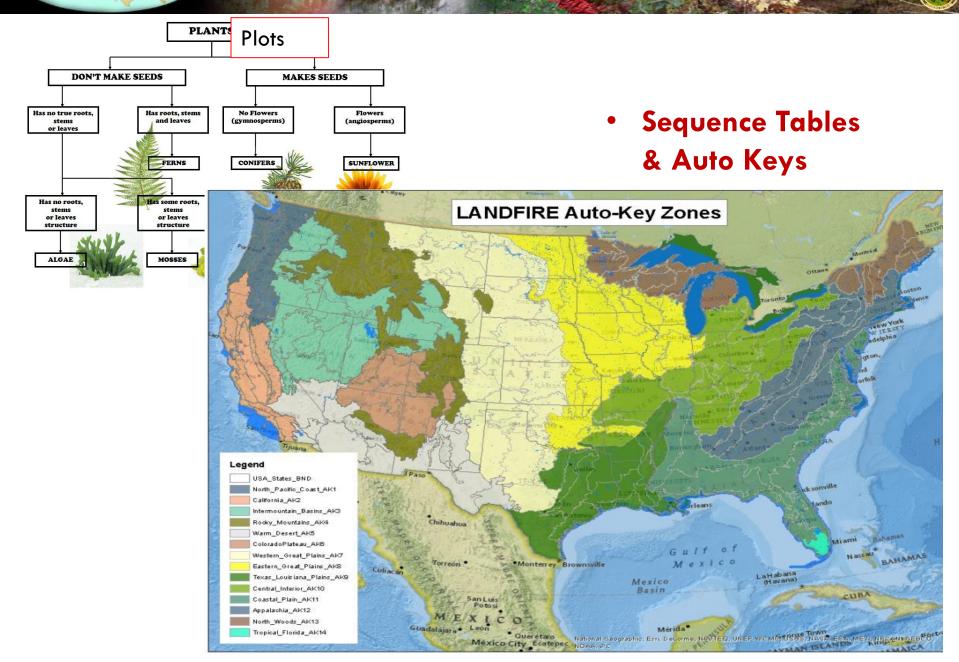
Forest Health Technology Enterprise Team


Drainage Index

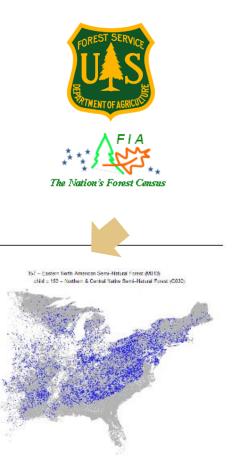
Productivity Index

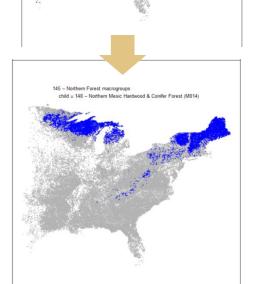
LANDFIRE Classification – Map Units / Legend

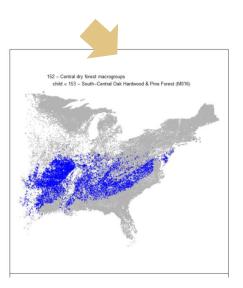
- "ECOLOGICAL SYSTEMS+"
- Augmented with :
 - Life-form
 - Leaf-form
 - Semi-natural vegetation
 - Cultural vegetation


National Vegetation Classification System (NVCS)

NVC LEVEL	VEGETATION CLASSIFICATION CRITERIA	ECOLOGICAL CONTEXT	SCIENTIFIC NAME	COLLOQUIAL NAME
Upper Levels	Predominantly physiognomy			
1 Formation Class	Broad combinations of general dominant growth forms.	Basic temperature (energy budget), moisture, and substrate/aquatic conditions.	Mesomorphic Tree Vegetation	Forest and Woodland
2 Formation Subclass	Combinations of general dominant and diagnostic growth forms.	Global macroclimatic factors driven primarily by latitude and continental position, or overriding substrate/aquatic conditions.	Temperate Tree Vegetation	Temperate Forest
3 Formation	Combinations of dominant and diagnostic growth forms.	Global macroclimatic factors as modified by altitude, seasonality of precipitation, substrates, and hydrologic conditions.	Cool Temperate Tree Vegetation	Cool Temperate Forest
Middle Levels	Physiognomy, biogeography, and floristics			
4 Division	Combinations of dominant and diagnostic growth forms and a broad set of diagnostic plant species that reflect biogeographic differences.	Continental differences in mesoclimate, geology, substrates, hydrology, and disturbance regimes.	Pseudotsuga - Tsuga - Picea - Pinus Forest Division	Western North America Cool Temperate Forest
5 Macrogroup	Combinations of moderate sets of diagnostic plant species and diagnostic growth forms that reflect biogeographic differences.	Sub-continental to regional differences in mesoclimate, geology, substrates, hydrology, and disturbance regimes.	Pseudotsuga menziesii - Quercus garryana – Pinus ponderosa - Arbutus menziesii Macrogroup	Northern Vancouverian Montane and Foothill Forest
6 Group	Combinations of relatively narrow sets of diagnostic plant species, including dominants and co-dominants, broadly similar composition, and diagnostic growth forms.	Regional mesoclimate, geology, substrates, hydrology and disturbance regimes.	Pinus ponderosa - Quercus garryana- Pseudotsuga menziesii Group	East Cascades Oak-Ponderosa Pine Forest and Woodland
Lower Levels	Predominantly floristics			
7 Alliance	Diagnostic species, including some from the dominant growth form or layer, and moderately similar composition.	Regional to subregional climate, substrates, hydrology, moisture/ nutrient factors, and disturbance regimes.	Pinus ponderosa - Quercus garryana Woodland Alliance	Ponderosa Pine - Oregon White Oak Woodland Alliance
8 Association	Diagnostic species, usually from multiple growth forms or layers, and more narrowly similar composition.	Topo-edaphic climate, substrates, hydrology, and disturbance regimes	Pinus ponderosa - Quercus garryana / Balsamorhiza sagittata Woodland	Ponderosa Pine - Oregon White Oak / Arrowleaf Balsamroot Woodland


LANDFIRE


Classification


Forest Division to Macrogroup

142 – Eastern Cool Temperate Forest child = 143 – Eastern Cool Temperate Natural Forest

Eastern Cool Temperate Forest (D008)

E.N.A. Semi-Natural Forest (M013)

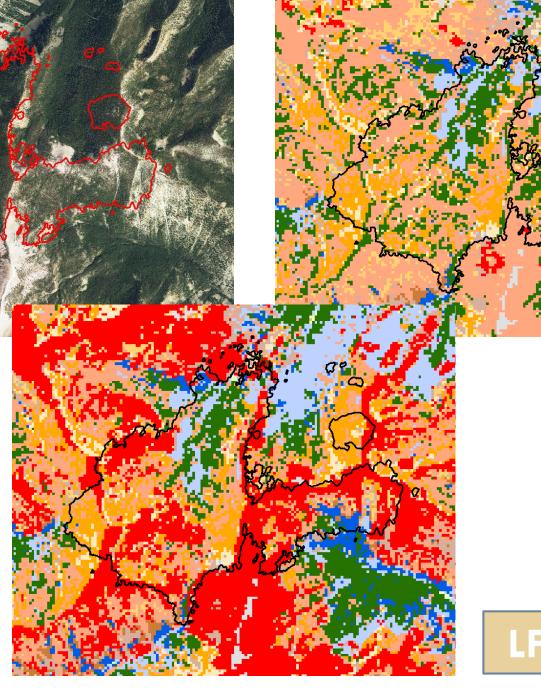
Northern Mesic Hardwood & Conifer Forest (M014)

South-Central Oak – Hardwood & Pine Forest (M016)

LANDFIRE

Classification

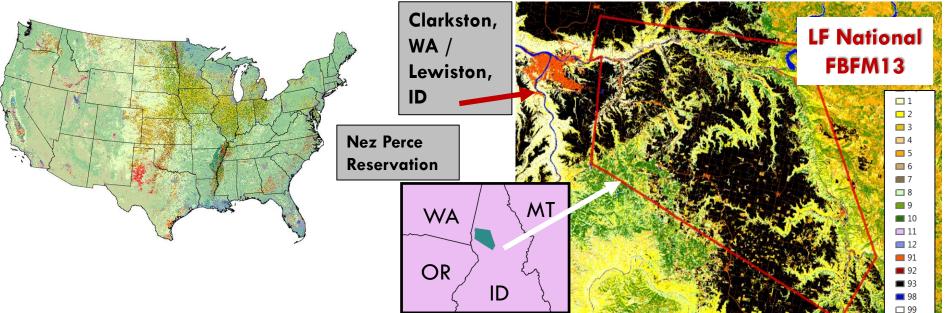
VEG-FUEL TYPE	LF National	LF 01' & 08'	LF 10'
DEVELOPED	Mapped from NLCD 2001 (+/-); values 21-24 (low-high); all types non- burnable	Mapped from NLCD 2001; values 21-22 (low-mod) mapped into burnable; all other types non- burnable	Mapped from NLCD 2001 w/ NLCD 2006 added in; values 21 (low) mapped into burnable; all other types non-burnable
AGRICULTURAL	Mapped from NLCD 2001 (+/-); values 81 (pasture- hayland) and 82 (cultivated- irrigated); all types non-burnable	Used AG mask from NLCD 2001; added in NASS data to map new types; some burnable, some non-burnable	Used AG mask from 2010 CLU data; mapped CDL types; some burnable, some non-burnable

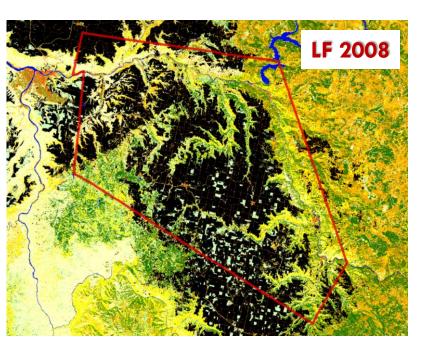

LANDFIRE

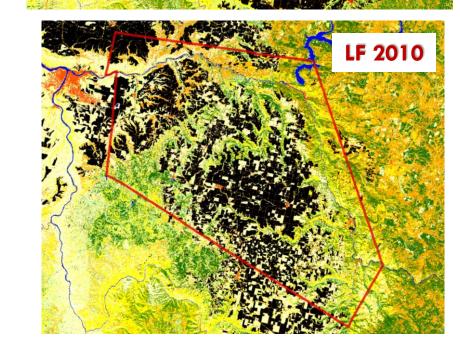
Classification

VEG-FUEL TYPE	LF National	LF 01' & 08'	LF 10'
INTRODUCED Seasonal annual grass fluctuations	Cheatgrass, other Annual Grass EVT's	Cheatgrass, other Annual Grass EVT's	Cheatgrass, other Annual Grass EVT's
RUDERAL	Specific SE EVT's	Specific SE EVT's	Specific SE EVT's; map w/ urban/ag
MODIFIED	Tallgrass prairies	Tallgrass prairies	Tallgrass prairies
MANAGED	Plantations	Plantations remapped	Plantations remapped by ownership
DISTURBED	N/A	LF08 created w/ updates due to disturbance	LF10 created w/ updates due to disturbance

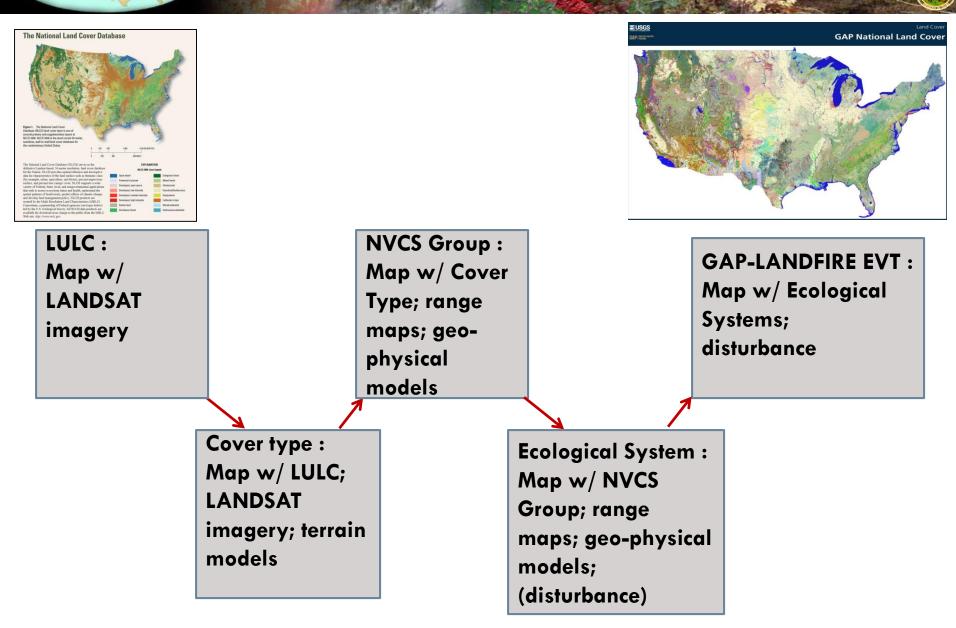
Thunder City Fire perimeter as of 7/29/13

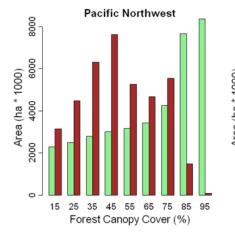

Barren / Rock Improvements (Rock = Red)

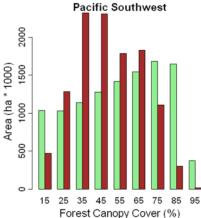


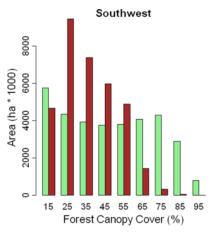


National Cropland Data Layer / Agriculture (Non-Burnable)

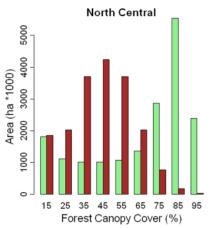


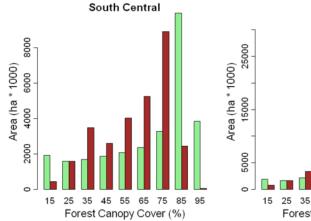


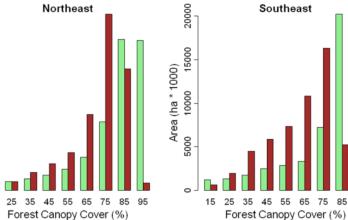

Vegetation: Type



Vegetation: Cover

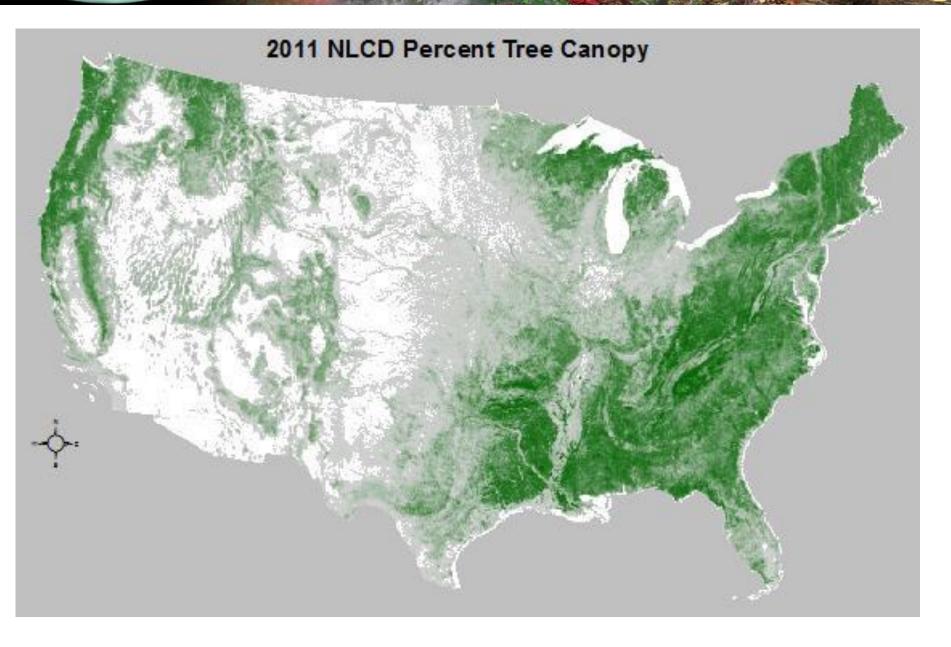

NDF

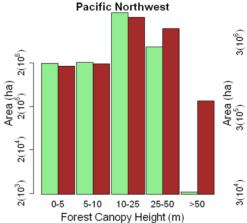


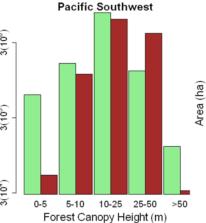


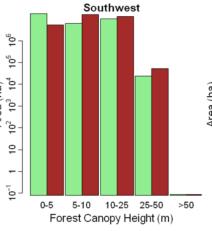
Southeast

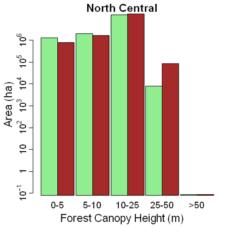
45 55 65 75 85 95

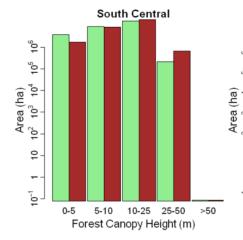


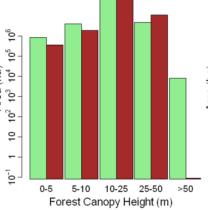

Forest Cover Remap

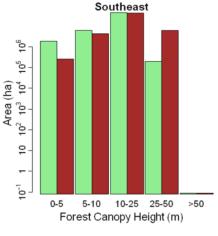

Vegetation: Cover




Vegetation: Height




NDFIRE



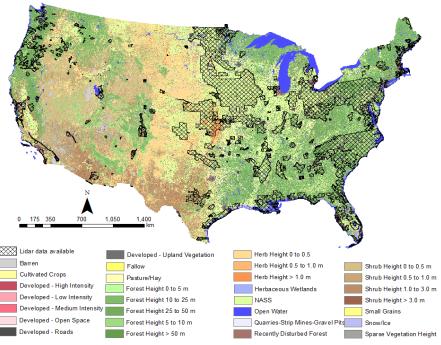
Northeast

Forest Height Remap

ICESat/GLAS

NDFIRE

- Launched January 2003, decommissioned August 2010
- Waveform lidar
- Footprints ~ 65 m diameter
- Footprints spaced 172 m apart along track
- Almost 2 billion measurements made globally



Spaceborne

lidar

Vegetation

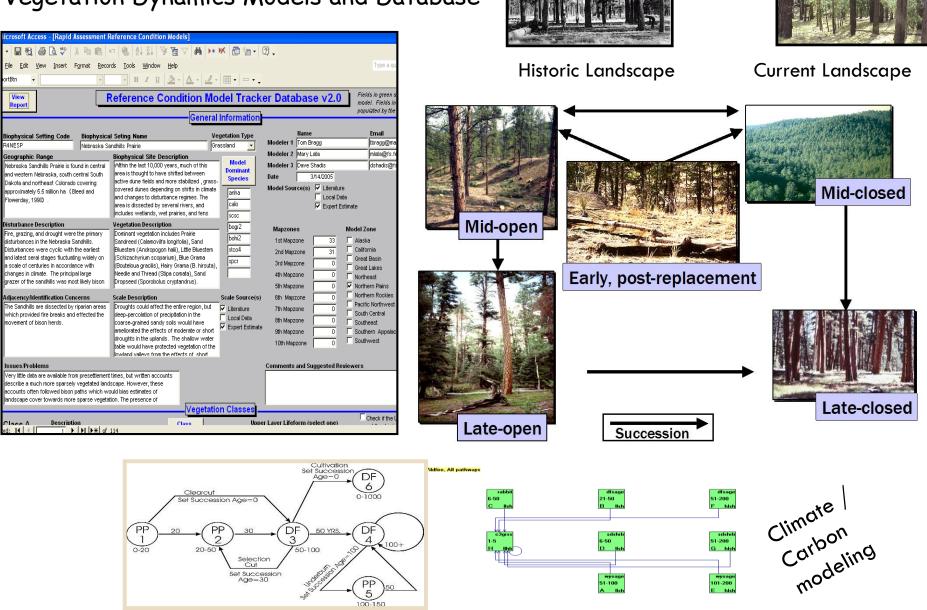
Vegetation

1,247,447 GLAS footprints on forested lands

NDFIRE

Provide discrete samples of vegetation structure

GLAS data availability in Alaska

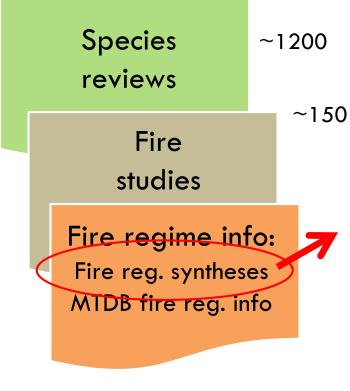

BpS & ESP – Potential Vegetation

ANDFIRE

PRODUCT	LF National	LF 2001/2008	LF 2010
Bio-Physical Settings (BpS)	Mapped using regression tree models with a variety of abiotic variables by each Map-zone	Western rangelands (grass/shrub types) remapped using SSURGO data and regression tree models	Refined barren, water, and sparse map units; refined some remapped units based on life-form anamolies
Vegetation Dynamics Models	Developed by fire and vegetation ecologists through a series of workshops held around the country; packaged in Access databases; available on LF.gov as MTDB	BpS "Groups" developed resulting in the Refresh Model Tracker (RMT); cross Map-zone approach for fire regime and reference condition mapping	Identified gaps between BpS map units and models in MTDB; BpS-FEIS linkages established

Succession

Vegetation Dynamics Models and Database



The Basics

VS.

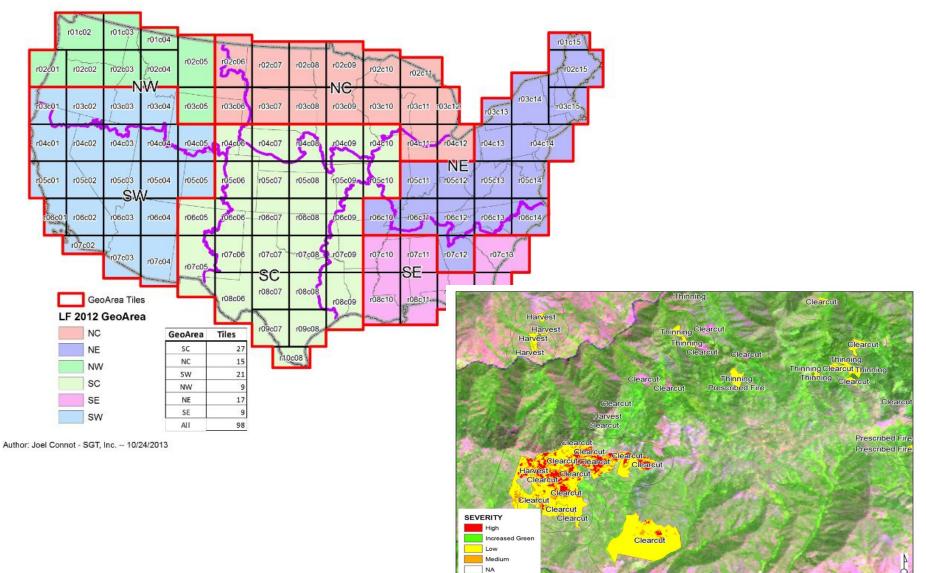
LANDFIRE BpS & ESP – Potential Vegetation

Integrating LANDFIRE geospatial & fire regime data into FEIS

LANDFIRE BpS ReMap LANDFIRE National BpS SSURGO-based map **Refresh BpS** in rangelands zone 9 Supplement FEIS species reviews 1. with fire regime information Provide managers with consistent, 2.

 Provide managers with consistent, quality fire regime information

Fire regimes of Alaskan black spruce communities


Table of Contents:

- INTRODUCTION
- SUMMARY
- DISTRIBUTION AND PLANT COMMUNITY COMPOSITION
- HISTORICAL FIRE REGIMES
- CONTEMPORARY CHANGES IN FUELS AND FIRE REGIMES
- LIMITATIONS OF INFORMATION
 - APPENDIX A: Summary of fire regime information for Biophysical Settings covered in this synthesis
 - APPENDIX B: Common and scientific names of plant and lichen species and links to FEIS reviews
- <u>REFERENCES</u>

Landscape Change: Disturbance

LANDFIRE 2012 RSLC Tiles

LANDFIRE

Unburned/Low

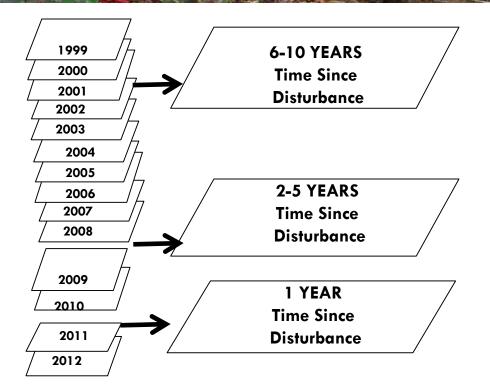
1,100

2 200 Meter

Landscape Change: Disturbance

NDFIRE

Service and a state of	A CONTRACTOR OF THE OWNER
Event	
Code	Event Description
1	Development
2	Clearcut
3	Harvest
4	Thinning
5	Mastication
6	Other Mechanical
7	Wildfire
8	Wildland Fire Use
9	Prescribed Fire
10	Wildland Fire
11	Weather
12	Insecticide
13	Chemical
14	Insects
15	Disease
16	Insects/Disease
17	Herbicide
18	Biological


Disturbance Types (causality)

- Fire
 - Mechanical treatments that do not remove material from the site (Mechanical Add)

Mechanical treatments that do remove material from the site (Mechanical Remove)

Wind

- Insect and disease
- Biological
- Chemical

Development

Vegetation Disturbance (VDIST)

- Type
 - Time Since Disturbance

• Vegetation Transition Databases (VTDB)

- Forest
- Non-forest

• Veg Transition (VEGTRA)

- Combine LF 2001 / LF08 / LF10 EVT/EVH/EVC w/ VDIST
- Create LF2010 (LF2012) EVT/EVC/EVH products

Landscape Change: Disturbance

Continuous Change Detection and Classification (CCDC)

Developed by C. Woodcock team at Boston University via membership on the NASA/USGS Landsat Science Team.

Benefits of this type of approach:

NDFIRE

- Uses the full history of information for each pixel (pixel data mining).
- The full history provides monitoring context for recognizing discrete events and long-term trends.
- Cyclical responses and seasonality of time series support detailed classifications.

SURFACE FUEL REQUIREMENTS

- Fire Behavior Fuel Model (FBFM)13, FBFM40, and Canadian Forest Fire Danger Rating System (CFFRDS) map layers
- Fire behavior represents average burning conditions.
- Anthropogenic features present

DE

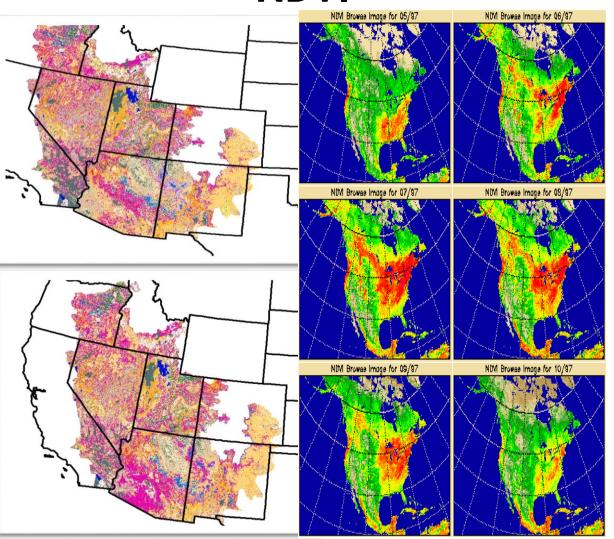
Features in EVT map are mapped as non-burnable fuel types (roads, developed/urban areas, agricultural fields, etc.)

LFTFC - LANDFIRE TOTAL FUEL CHANGE TOOL

ANDFIRE

Fuels

	DI_z37_chk Add Edit Rule Rule	14 -	elete Rule		ule	iession No w Sessio		Select All C FB	C	FCCS FLM
Exisiting Vegetation Number and Name										
232300 West Gulf Coastal Plain Mesic Hardwood Forest										
Ruleset Compare FM Distribution Graph EVT Description										
100% of EVT 0% of BPS 0% of Wild 0% of BPS Wild Pixels left behind: 0										
Range of Cover	Range of Height	BPS	Wild	F.M.13	FM40	CanFM	FCCS	FLM	CG	CC
10%-69% Tr	5(m)- ma× Tr	any	any	9	TL6	9999	9999	9999	2	9
70%-79% T	0(m)-10(m) Tr	any	any	9	TL6	9999	9999	9999	2	9
70%-79% T	10(m)- 25(m) T	any	any	8	TL2	9999	9999	9999	2	9
70%-79% T	25(m)-50(m) T	any	any	9	TL6	9999	9999	9999	2	9
80%-100% T	0(m)-50(m) Tr	any	any	8	TL2	9999	9999	9999	2	9


CANOPY FUEL REQUIREMENTS

- CBD, CBH, CC, and CH maps should capture a reasonable approximation of current canopy fuels and CBH should be in values of meters X 10, CBD should be kg/m³ X 100, CC should be in percent and CH should be in meters X 10.
- All anthropogenic features present in EVT shall be mapped as areas of zero for canopy fuel. (e.g., roads, developed/urban areas, agricultural fields, reservoirs or barren areas etc.)
- Areas where torching and crown fire do not occur, but tree cover is present should be represented by a CBH = 10 meters, CBD = 0.012 kg/m³, CC and CH stay as predicted.
- No canopy fuel should be present in areas of just shrub or grass cover. If tree cover is not present canopy fuels should not exist.
- CBH should not exceed CH.

DFIRE

Fuels Innovations

Seasonality of fuels **NDVI**

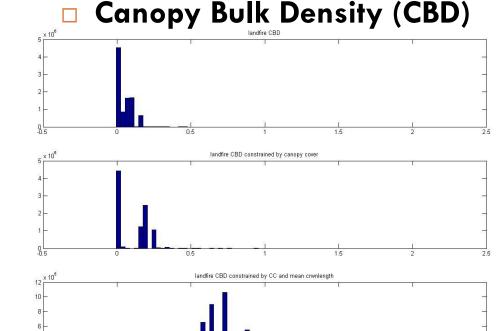
LANDFIRE

LOW- KBDI

HIGH - KBDI

CANOPY FUEL

Fuels Innovations

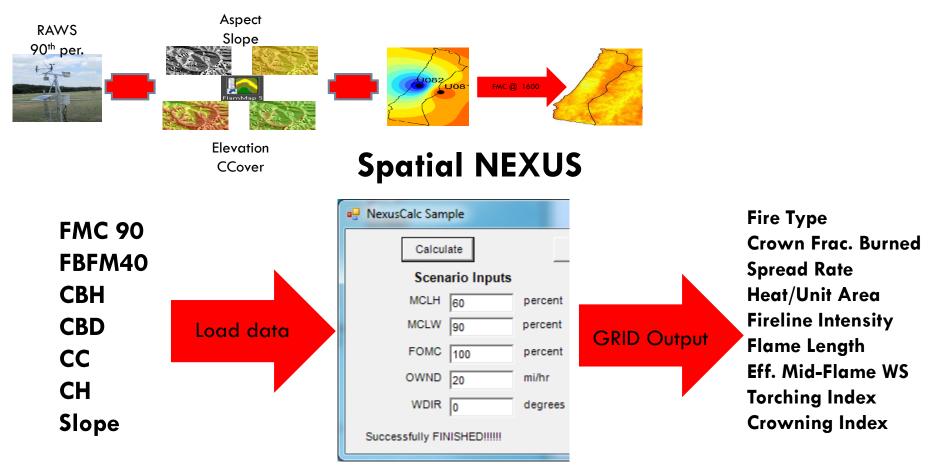

Leaf off / Leaf-off and phenology

DE

- Main fire season may be leaf-off in most of the Eastern CONUS
- Leaf-on conditions for prescribed fire

Tree list mapping

- Improved canopy fuels
- Enables 3-D modeling
- Engage w/ FIA; FHTET; FVS


- Increase resolution in the EVH layer
- Creating Hybrid Structure from LANDFIRE AND Lidar Combinations ((CHISLIC) Tool
- LIDAR availability as mapping and/or training data

LANDFIRE INNOVATIONS: FIRE BEHAVIOR

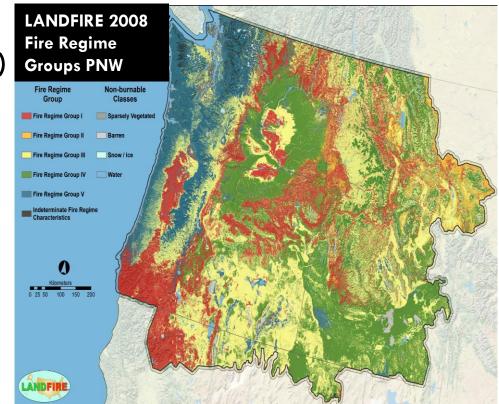
Fuels

Create fuel moisture GRIDs from Flammap outputs

ANDFIRE

Fire Regime

Fire Frequency and Severity Products


- Mean Fire Return Interval (MFRI)
- Historical fire probabilities (% Low, Mixed, Replacement Fire {PLS, PMS, PRF})
- Fire Regime Group (FRG)

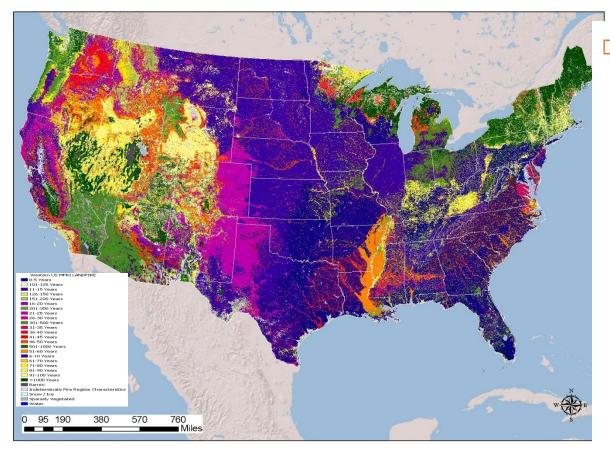
Departure Products

- Succession Class (SCLASS)
- Vegetation Departure (VDEP)
- Vegetation Condition

Class (VCC)

ANDFIRE

Fire Regime



PRODUCT	LF National	LF 01' / 08'	LF 10'
Mean Fire Return Interval	LANDSUM – fire frequency from veg dynamics models; fire size, spread, and effects modeled explicitly	BpS Groups – data from Refresh Model Tracker (RMT)	Individual BpS's from Model Tracker DataBase (MTDB)
(% Low, Mixed, Replacement Fire PLS PMS PRF	LANDSUM – fire type and probability from veg dynamics models; fire size, spread, and effects modeled explicitly	BpS Groups – data from RMT	Individual BpS's from MTDB
Fire Regime Group	LANDSUM modeling and rule set combining MFRI and PLS, PMS, PRF	BpS Groups – data from RMT	Individual BpS's - data from MTDB

- **FRG definitions changed to Interagency Fire Regime Condition Class Guidebook.**
- Definitions refined to create discrete, mutually exclusive criteria for use with LANDFIRE's fire frequency and severity data products.
- Are these definitions still valid and working?

NDFIRE

Fire Regime

NDFIR

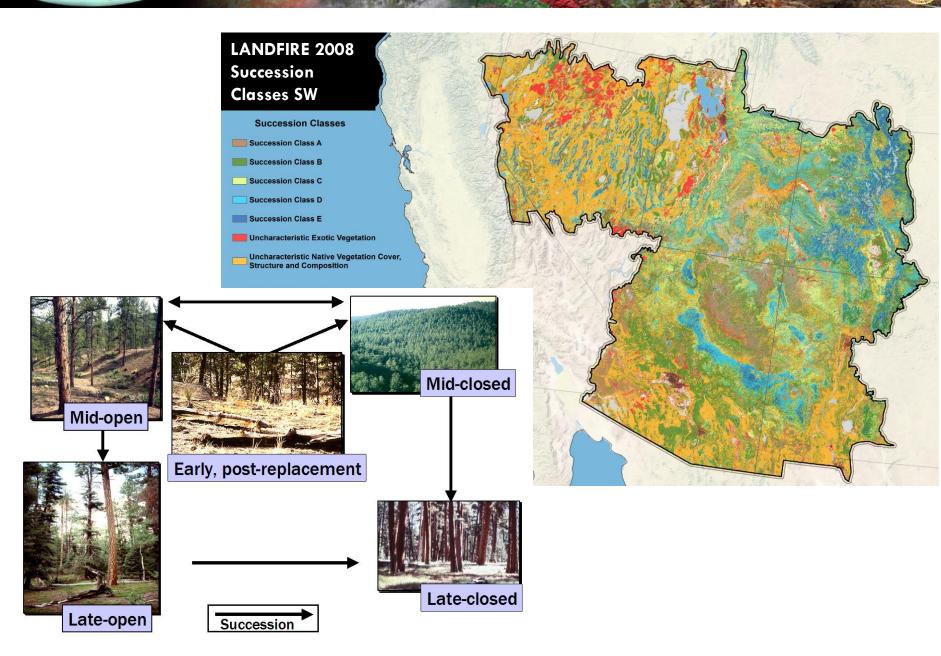
MEAN FIRE RETURN INTERVAL REQUIREMENTS

MFRI = historical fire regime characteristics

- Landscape interactions of: vegetation dynamics, fire spread, fire effects, and spatial context as modeled by LANDSUM
- Represented by LANDFIRE Biophysical Settings (BPS) layer as described by the BPS Group Model documentation.

PERCENT LOW, MODERATE, REPLACEMENT SEVERITY REQUIREMENTS

- Average top-kill for a given vegetation type within a typical fire perimeter
 - Low severity = less than 25 percent


DE

- Mixed severity = between 25 and 75 percent
- Replacement severity = greater than 75 percent

(Hann and others 2004)

Intermediate FRG update in 2015 (Hann)

LANDFIRE

SUCCESSION CLASS (SCLASS) "CONCEPT" REQUIREMENTS

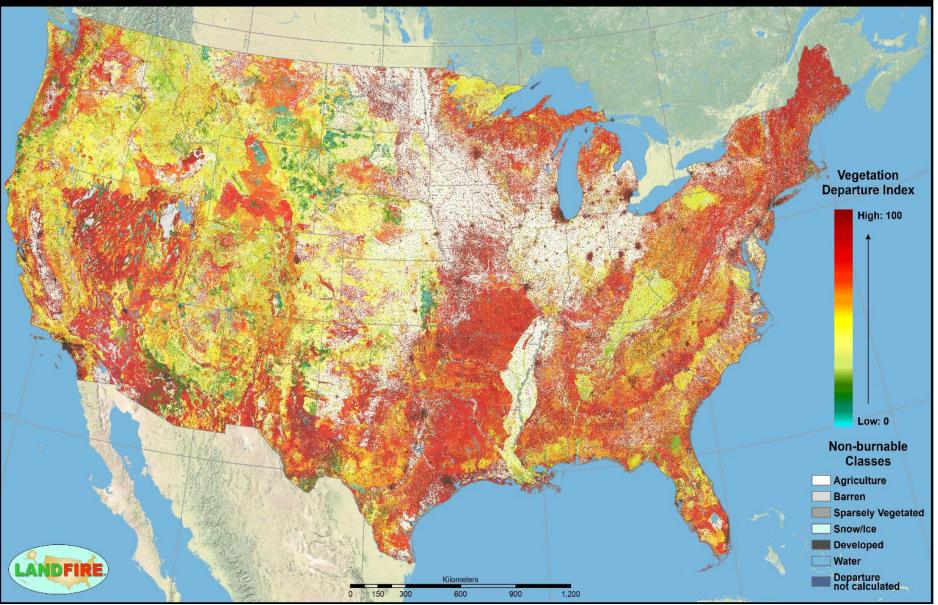
- SCLASS layer characterizes current vegetation conditions (species composition, cover, and height) and ranges of successional states within each biophysical setting
- SCLASS can also represent uncharacteristic vegetation components, such as exotic species.
- Classes represent vegetative states
 - Disturbance-related dynamics (fire frequency),
 - Structural/Growth development.

LANDFIRE

PRODUCT	LF National	LF 01' / 08'	LF 10'
Succession Class	MTDB rules and map review and editing	RMT rules with back filling	LF National maps with back filling
Departure Simulation Unit	Mapzone w/ buffer	Exemplar model from the BPS Group	N/A
Reference Condition	LANDSUM simulations	Exemplar model from the BPS Group	
Summary Unit	Mapzone / Subsection	HUC 4,5,6 depending on BPS Group FRG	
Condition Class	Grouped VDEP	Grouped VDEP	N/A

SUCCESSION CLASS "MAPPING" REQUIREMENTS

 S-class = capture a reasonable approximation of current conditions (both characteristic and uncharacteristic vegetation)


NDFIP

- Map units nested within the corresponding BPS and include only allowable succession class units specified by the BPS' vegetation model (described in the MTDB S-class descriptions). Additionally, units may include Uncharacteristic Natural/Exotic.
- Map units correspond to EVT, EVC and EVH layers and model rules.
- Spatial distribution of map units generally consistent with adjacent map zones to minimize seam lines.
- Anthropogenic features (roads, developed/urban areas, and agricultural) labeled (e.g. Ruderal vegetation types, plantations, etc.)

LANDFIRE

Vegetation Departure

LANDFIRE 2008 Refresh Updates: Vegetation Departure Index

egetation Departure

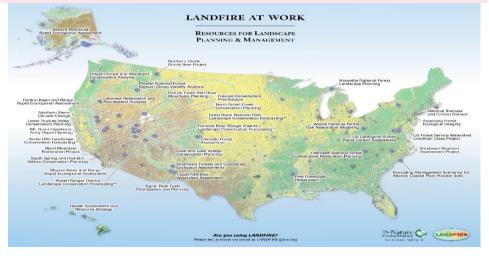
VEGETATION DEPARTURE "CONCEPT" REQUIREMENTS

Vegetation Departure (VDEP) ranges from 0 - 100

DE

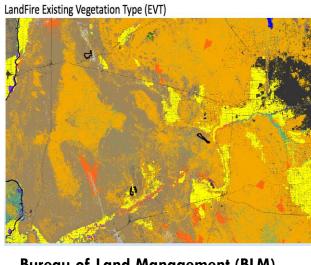
- Depicts <u>current vegetation departure</u> from simulated historical <u>vegetation reference conditions</u> (e.g. changes in species composition, structural stage, and canopy closure).
- Three condition classes describe low departure (VCC 1), moderate departure (VCC 2), and high departure (VCC 3) – formerly Fire Regime Condition Class {FRCC}).
- VDEP is calculated using species composition, structural stage, and canopy closure using methods described in the Interagency Fire Regime Condition Class Guidebook.

VEGETATION DEPARTURE "MAPPING" REQUIREMENTS Reasonable approximation of continuous

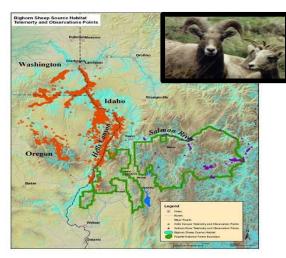

- vegetation departure from historical conditions. (FRCC Guidebook documentation).
- Spatial distribution generally consistent with adjacent map zones to minimize seam lines.
- Anthropogenic features are excluded from the map product (roads, developed/urban areas, and agricultural).

Web-Hosted Applications Map - TNC Conservation GATEWAY

- Developing statewide forest assessments


LANDFIRE

- Analyzing the impact of habitat fragmentation on bobcat populations
- Looking at how climate change could affect flora and fauna



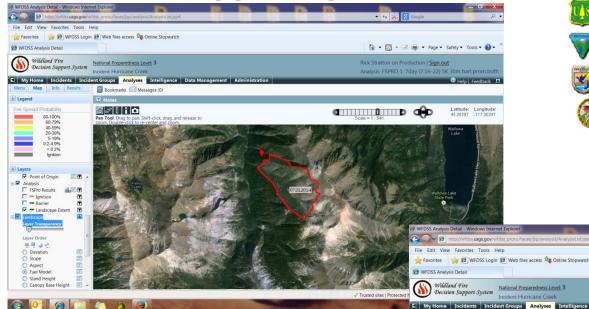
Arizona Solar Regional Mitigation Project

- 2012
- Vegetation Communities

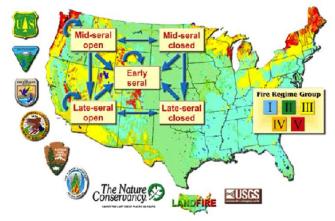

Bureau of Land Management (BLM) Sonoran Desert Ecoregional Assessment

Bighorn Sheep Viability Analysis - Payette National Forest

Bee Pollination Study: California

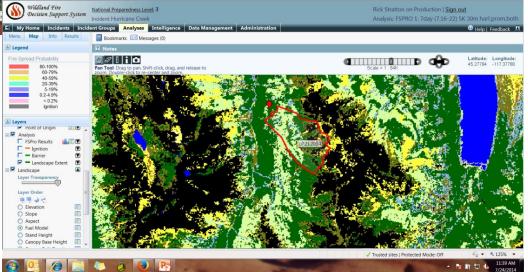


Sage-Grouse Habitat Analysis: Western North America


LANDFIRE

Applications

WFDSS – Wildland Fire Decision Support System

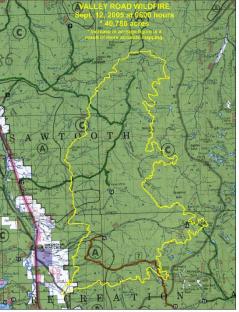

INTERAGENCY FIRE REGIME CONDITION CLASS

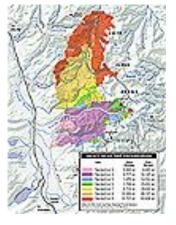
🕶 😽 🗙 🚼 Goo

🟠 🔹 🔝 🔹 🛲 🔹 Page 🔹 Safety 🕶 Tools 🕶 🔞 🕶

- Fuel layer editing
- Fire behavior analysis

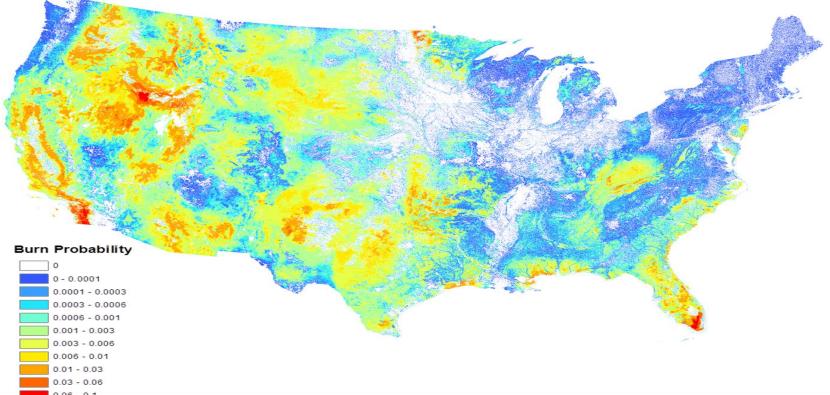



Valley Road Fire burns Fisher Creek, three miles behind this Shaw Mesa home near Highway 75 in the Sawtooth Valley, Idaho. Copyright photo: Lynne Stone, Boulder-White Clouds Council.

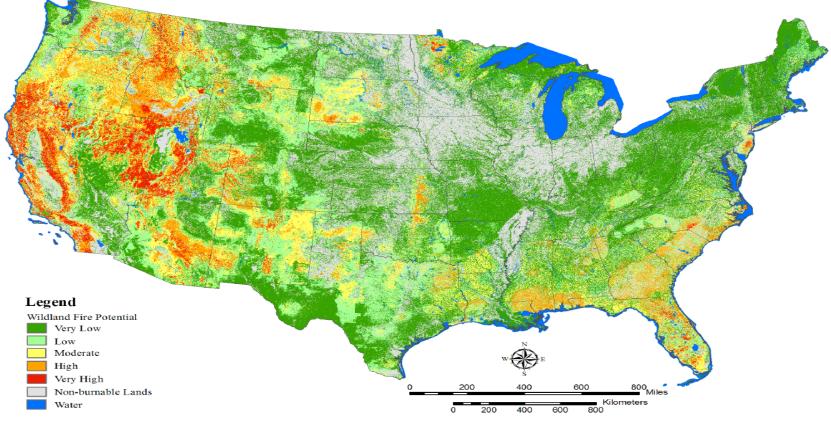

Idaho Gov. Dirk Kempthorne, Maj. Gen. Lawrence Lafrenz of the Idaho National Guard, and representatives and others visited the fire

Tim Sexton, incident commander of the fire, summed it up: "The Sawtooth Valley is still a catastrophe waiting to happen, due to dense, unburned stands of beetle-killed lodgepole pine on the west side of Highway 75."

Tim Sexton - Valley Road IC. Stated, "millions of dollars were saved on these fires due to modified tactical decisions based upon better informed fire progression and spread predictions using LANDFIRE data."



WUI developments, a power grid, and locally significant transportation corridor in central Idaho



FSim Burn Probability - 2014. Fsim (Fire Simulator) is burn probability and conditional flame length probabilities based on large-fire-perimeter event sets.

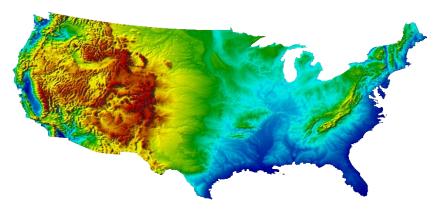
- Since 2010, data generated on a semi-annual basis within the Fire Program Analysis (FPA).
- Future development of the National <u>wildfire risk assessments</u> is planned to continue as part of the Wildland Fire Investment Planning System (WFIPS).
- LANDFIRE (LF2010) data {surface fuels, canopy characteristics, and terrain} are fundamental part of this process.

Wildland Fire Potential map 2012.

Relative potential for wildfire

- Difficult to contain fires (based on past fire occurrence and estimates of wildfire likelihood)
- Higher WFP values represent fuels w/increased probability of high-intensity fire
- LANDFIRE (LF2008) data of canopy height, canopy cover, and canopy base height as well as existing vegetation type and shrub canopy cover are used to define locations with crown fire potential.

LANDFIRE Future


Timeline

FY	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Data	Product	S:			LF Natl.		LF 2008		LF2010		LF2012					
Main	tenance	e														
		E	Biennial	& Deca												
remapping																
										_				_		
								Bienr	nial	Bienn	ial			Bienr	nial	
								updat	te	updat	е			updat	te	
												Dec	adal r	remap		

LANDFIRE remap

NDFIRE

- Planning, Coordination, Transition year 2015
 - Questionnaire, After Action Review/Scoping Workshops
- Implementation 2016

Workshop Process

QUESTIONS?

- 1. What was planned,
- 2. What really happened,
- [□] 3. Why did it happen,
- $^{\Box}$ 4. What could be done better next time
- □ 5. What needs to be done in the future
- □ 6. Recommendations