Using the LANDFIRE Biophysical Settings Model Descriptions

National Interagency Fuels Technology Team

www.niftt.gov

Overview	1
I.What are Biophysical Settings (BpS) and BpS Models?	
2. How are Biophysical Setting Models and Descriptions Used?4	
3. Background	
3.1 Developing the Models4	ŀ
4. Obtaining the LANDFIRE BpS Model Descriptions)
5. Understanding the Model Descriptions	1
5.1 Overview	1
5.2 General Information SectionII	
5.3 Vegetation Classes Description14	ł
5.4 Disturbances Section	;
5.5 References Section)
6. Ancillary Files	1
6.1 Reference Condition Summary Table20)
6.2 Metadata21	
Summary	
References	

Overview

In this document, you'll learn the following: First, we'll discuss what biophysical settings (BpS) and the associated LANDFIRE BpS models are. Second, you'll learn how you can use the BpS models and associated descriptions. After that, we'll go over some background information on how they were created. We'll then illustrate how to obtain the BpS descriptions from the LANDFIRE website, and you'll download an example BpS model description. And finally, we'll examine the major elements of the model descriptions and briefly look at the ancillary files included with the descriptions.

I. What are Biophysical Settings (BpS) and BpS Models?

In 2005, the LANDFIRE Project began creating numerous models to describe natural ecosystems – also known as "biophysical settings" – as they existed before Euro-American settlement. What, specifically, are biophysical settings? Biophysical settings (BpS) represent the vegetation that may have been dominant on the landscape prior to Euro-American settlement and are based on both the current biophysical environment and an approximation of the historical disturbance regime. The LANDFIRE BpS models describe vegetation, geography, biophysical characteristics, succession stages, and disturbance regimes for each BpS and some of the major disturbance types affecting these ecosystems prior to significant alterations by European settlers.

Note that various terms other than biophysical settings are sometimes used to describe natural, pre-settlement ecosystems; for example: "historical vegetation," "reference conditions," and "potential natural vegetation." Also, on <u>www.landfire.gov</u>, the models are named LANDFIRE Vegetation Dynamics Models (whereas in the model descriptions they're titled LANDFIRE Biophysical Setting

3

Models).

2. How are Biophysical Setting Models and Descriptions Used?

LANDFIRE BpS Models provide land managers with a historical (pre-European settlement) perspective of landscape conditions. The BpS models serve as a potential baseline from which to compare historical to current conditions. Planners can thereby identify which vegetation composition and structures are overrepresented or are lacking on a specific landscape. Using the LANDFIRE BpS models and the associated descriptions, planners and managers can investigate and identify a way forward that is more likely to provide the future conditions they desire.

Note: If you choose to print this document, please do so in color in order to clearly view the graphics below.

3. Background

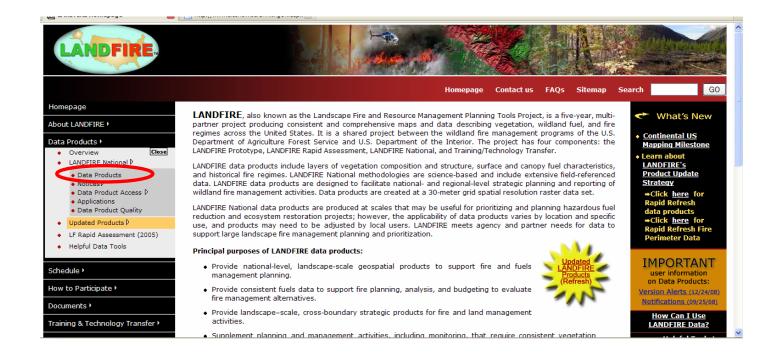
3.1 Developing the Models

So, how were the models developed? Between 2005 and 2009, numerous modeling workshops were held across the U.S. in which teams of local experts were solicited to develop BpS models for LANDFIRE mapping zones. Modelers, such as USFS, BLM, NPS, BIA, and FWS employees, representatives from The Nature Conservancy and other NGOs, state agencies, and academics spent an intensive week in the modeling workshops. They compiled professional literature and local knowledge and used public-domain software to describe and quantitatively model the array of biophysical settings in each LANDFIRE map zone.

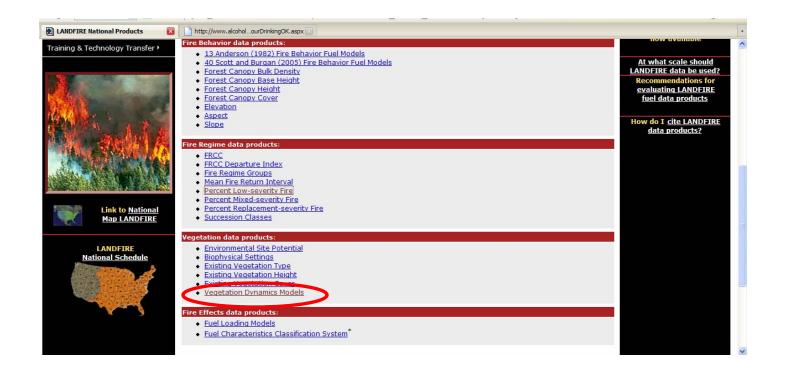
Before proceeding, it will be useful to read two short LANDFIRE documents to obtain a good overview of this nearly five-year modeling effort.

To enhance your understanding of the BpS concept and the LANDFIRE BpS modeling process, please open a web browser and read the data product description located on landfire.gov at:

http://www.landfire.gov/NationalProductDescriptions24.php, and after reading that page, please return to this document. We will be exploring other related pages on that site later on in this document.

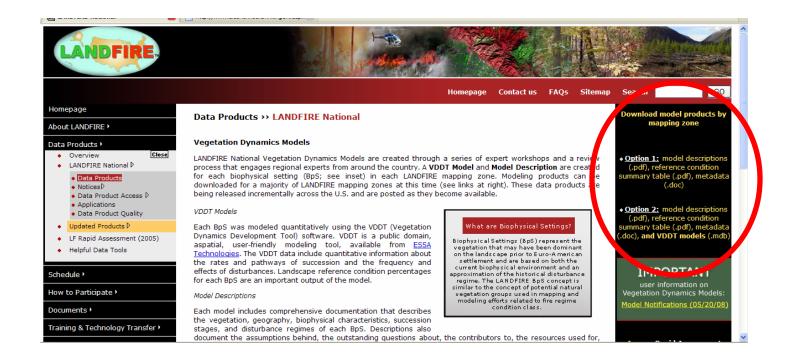

4. Obtaining the LANDFIRE BpS Model Descriptions

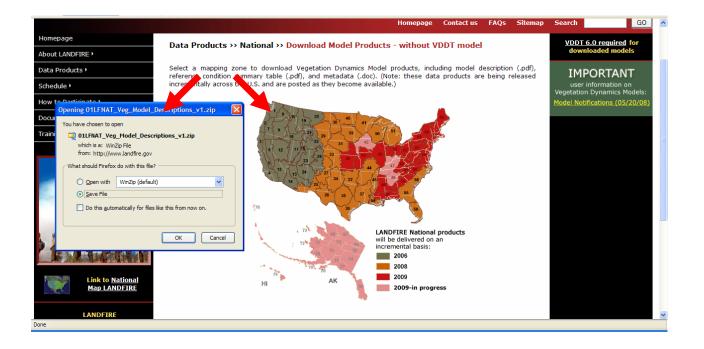
We will use a series of screen captures illustrating the downloading process to help you navigate through the sequence of BpS Model pages on www.landfire.gov. We recommend that you conduct a live download as you read through the material below. You'll want to first ensure that PDF-compatible software, such as Adobe Reader, has been installed on your computer. In addition, you may want to save this document to serve as a how-to guide for future use.


- At <u>www.landfire.gov</u>, notice the menu on the left side of the page. First select the *Data Products* link.
- In the sub-menu, select LANDFIRE National. Before proceeding, notice that this menu also contains a LANDFIRE Rapid Assessment option. The Rapid Assessment models were posted in 2005. However, we recommend working with the LANDFIRE National models as they are more refined than the Rapid Assessment models, and the LANDFIRE National models are compatible with the other LANDFIRE National products.

In addition, we recommend that at some point you explore the other items in the menu on <u>www.landfire.gov</u> for information on the LANDFIRE Project and its various products.

 After clicking on the LANDFIRE National link, a gray sub-menu appears with several more links. (Later on, we recommend that you explore some of these other links to learn more about LANDFIRE's various products). Now select the Data Products link in the sub-menu as the next step in the model downloading process, as shown below:


 Clicking on Data Products in the sub-menu takes you to the LANDFIRE National Data Products page. Scroll down to the list of products, as shown below. These links take you to descriptions and example maps of the various data products. Again, we recommend that you later explore this page and the rest of the LANDFIRE website.


- As shown in the above image, click on the Vegetation Dynamics Models, a.k.a. the LANDFIRE Biophysical Setting Models. You'll see that there's a link to these models in the right column of this page, as well.
- You're now taken to the Vegetation Dynamics Models page that you read earlier. First, notice the green box on the right side of the page. These Model Notifications explain various issues with the models that have been identified and they inform the user how to better use them. Before you use a model, it is important to check these notifications to make sure no unresolved problems have been identified for that model. Now, focus on the upper right portion of the page, as shown in the image below. The first thing to notice is that the data products are delivered according to each of LANDFIRE's seventy-nine mapping zones. In a moment, we'll proceed to the interactive map that is used for selecting the models for a given zone. Next, notice that the page provides two download options: Option 1, which is what we'll work with in this document, provides the model descriptions, an associated summary table, and metadata; Option 2 provides

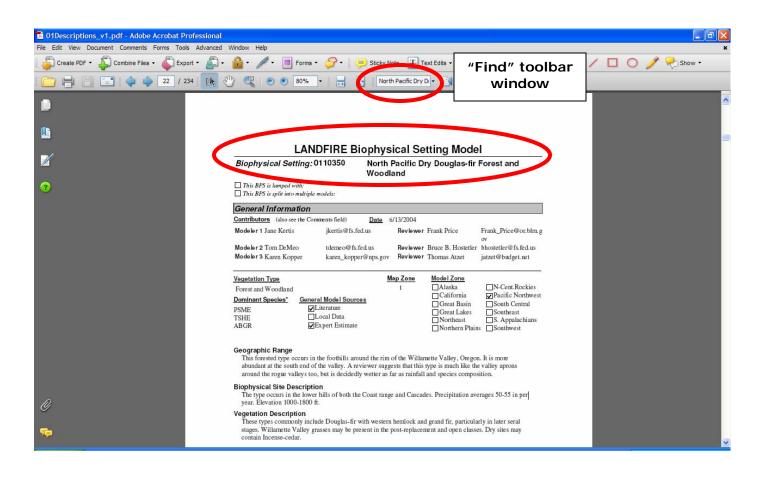
7

the same items plus copies of the actual VDDT models that were developed during the numerous modeling workshops. You would select Option 2 when you want to investigate the models more thoroughly or use a LANDFIRE VDDT model as a starting point for your own modeling project.

- Clicking on Option I takes you to the interactive modeling zone map, as shown below. Notice that data for all zones in the lower 48 states are currently available. Data for zones in Alaska and Hawaii are scheduled to be available by fall 2009.
- We'll be using Zone I in the Pacific Northwest for our example. Click in Zone I to activate the file download dialog box and download the zip file to an appropriately named folder, such as "LF ZI Descriptions." The zip file contains 3 files: the model description, which we discussed above, and two additional files: a reference condition summary table and a metadata file, which will both be discussed below.

• Now that you've learned how to obtain the BpS descriptions from the LANDFIRE website, we'll discuss the model descriptions themselves.

5. Understanding the Model Descriptions


5.1 Overview

In this section, we'll explore the BpS model description that you downloaded from www.landfire.gov. We'll examine each part of the description to see some example data.

Note that this 234-page long PDF document contains descriptions for forty-nine BpS models. So, how does one navigate efficiently within this large document? Rather than scrolling page-by-page searching for a given model, you can use Adobe's *Find* toolbar at the top of the page or the Windows *Find* tool (in the Edit drop-down menu), both of which are shown below:

Gundo Ctrl+Z Ctrl+Z Front -	
Redo Shift+Ctrl+Z	
Cut Ctrl+X 3 / 234	
⊆opy Ctrl+C	
Paste Ctrl+V Delete	levels: 100yr and 1000 yr return. The results were only slightly different, suggesting that the current model's dynamics are strongly controlled by fire rather than insect/disease.] Also the current three box model may show too much fire for the areas that are not near native burning.
Copy File to Clip <u>b</u> oard	Vegetation Classes
Select All Ctrl+A Deselect All Shift+Ctrl+A	Class A 10% Indicator Species* and Cancey Position Structure Data (for upper layer lifetorm) Early Development I All Structures QUCA4 Upper One Max
Check Spelling	Upper Layer Life form FEID Lower Height Time 0m Time 0m Upper Layer Life form TODI Middle Time 0m Time 0m Time 0m Upper Layer ToDI Middle Time 0m Time 0m Time 0m Shrub ACMA3 Middle Upper layer lifeform differs from dominant lifeform. Upper layer lifeform.
Eind Ctrl+F Shift+Ctrl+F Search Results	Description Bunchgrass/forb groundcover with resprouting oak and oak saplings following stand replacement fire. Poison
Preferences Ctrl+K	oak, bay, and bigleaf maple may be common in the understory in CA. Replacement fire (MFF=200 vpr) spesets the stand, while surface fire (MFR=50) or mixed severity fire (MFR=12-13 yrs) may occur. After 30 years the stand will normally (with occasional fires) pass to class C (mid-open), however, if there has been no fire for about 28 years the stand will close and succeed to class B (mid-closed). A reviewer suggested that QUKE (which indicates disturbance) be added to the species composition for this class. Also, the reviewer noted that FEID can be occidentally on the occidentally a little fine leaved interbreeding fescue) and that in Oregon ACMA is not likely associated with this type.
	Class B 5% Indicator Species' and Canopy Position Structure Data (for upper layer lifeform) Min Max Mid Development I Closed QUGA4 Upper Min Max Upper Layer Lifeform PSME Upper August 100 % Herbaccous FEID Lower Tree Size Class Large 21-33*DBH Shrub TODI Lower Upper layer lifeform differs from dominant lifeform.
	Description
	This stand type represents the portion of the landscape that has escaped fires for about 30 years or so, and has developed a closed canopy (> 35% canopy cover of oak with some Doughas-fir). In the absence of fire this stand will perptuate, and may eventually convert to a condifier forest. However, fire of any severity can occur in these stands. Occasional severe fires (MFR=300 yrs) return the stand to post-replacement (class A), while surface (MF=20) or mixed (MFR=20) severity fires will open the stand up to class C (mid-closed). Insect/disease has a low probability (a=2001) of opening the stand up to class C (mid-closed).

Let's say you've been working on a landscape planning project and you want to learn more about the area's Douglas-fir BpS. And, after consulting your Geographic Information System you've learned that the applicable BpS model is the *North Pacific Dry Douglas-fir Forest and Woodland*, which is model number 0110350. To quickly locate that model in the PDF document, simply type the model name or number into the *Find* toolbar window and press *Enter* to locate the model, as shown below. (Note: if you would like to learn more about the LANDFIRE BpS layer, visit the Data Products > LANDFIRE National section of <u>www.landfire.gov</u> for details.)

Now that we've found our model description, which is on page 22, we can begin reviewing the main elements of the Dry Douglas-fir BpS model description.

For learning efficiency, we recommend that you print the North Pacific Dry Douglas-fir Forest and Woodland BpS model description, which ranges from pages 22 – 25, and refer to your printed version as you work through this guide.

5.2 General Information Section

Now we'll review the first two pages of the description, which provide a general overview of the BpS. The first part, outlined in red below, shows the BpS name, model number, date, modeler names, and model reviewers. This information serves to document who did the modeling and who provided peer review

comments to improve the final product. In addition, you can use this information to contact the modeler if you have concerns or questions about a given BpS model.

☐ This BPS is lamped with: ☐ This BPS is raphit into multiple models: ☐ Cantribution: General Information Cantribution: (also see the Comments field) Date 6/13/2004 Modeler 1 Jane Kertis jærtis @ fs.fed.us Reviewer Frank Price Frank_Price @ or.blm, ov Modeler 2 Tom DeMeo tdmeo@fs.fed.us Reviewer Bruce B. Hostetter bhostetter @ fs.fed.us Modeler 3 Karen Kopper karen_kopper@nps.gov Reviewer Thomas Atzet jærzet@budget.net Porest and Woodland 1	Biophysical Setting: 01		Pacific D	tting Mode ry Douglas-fir	
Cantributors (also see the Comments field) Date 6/13/2004 Modeler 1 Jane Kertis jkertis@fs.fed.us Reviewer Frank_Price@or.blm. ov Modeler 2 Tom De Meo tde meo@fs.fed.us Reviewer Bruce B. Hostetler @fs.fed.us Modeler 3 Karen Kopper karen_kopper@mps.gov Reviewer Thomas Atzet jatzet@budget.net Vecetation Ivee Importants Importants Pacific Northwest Pacific Northwest Portest and Woodland 1 California Pacific Northwest South Central PSME Dical Data Southeast Southeast Southeast Southeast ABGR Expert Estimate Northern Plains Southeast Southeast Southeast Biophysical Site Description The type occurs in the foothills around the rim of the Willamette Valley, Oregon. It is more abundant at the south end of the valley. A reviewer suggests that this type is much like the valley aprons around the roge valley stoo, but is decidedly wetter as far as minfall and species composition. Biophysical Site Description These types cocurs in the lower hills of both the Coast range and Cascades. Precipitation averages 50-55 in per year. Elevation 1000-1800 ft. Vegetation Description These types control in the walley strSHE and ABGR are not present at any cover. The valley	-	dels:			
Modeler 1 Jane Kertis jkertis @fs.fed.us Reviewer Frank Price Frank_Price @or.blm. ov Modeler 2 Tom DeMeo Modeler 3 Karen Kopper tdemeo@fs.fed.us Reviewer Bruce B. Hostetler bhostetler@fs.fed.us Modeler 3 Karen Kopper karen_kopper@nps.gov Reviewer Thomas Atzet jazzt@budget.net Vecetation type General Model Sources California Decide Northwest PSME Clicitrature South Central South Central PSME Clicat Data Southeast Southeast ABGR Expert Estimate Northeast Southwest Geographic Range Is forested type occurs in the foothills around the rim of the Willamette Valley, Oregon. It is more abundant at the south end of the valley. A reviewer suggests that this type is much like the valley aprons around the rogue valleys too, but is decidedly wetter as far as rainfall and species composition. Biophysical Site Description The type occurs in the lower hills of both the Coast range and Cascades. Precipitation averages 50-55 in per year. Elevation 1000-1800 ft. Vegetation Description These types commonly include Douglas-fir with western hemlock and grand fir, particularly in later seral stages. Willame the Valley grasses may be present in the post-replacement and open classes. Dry sites may contain Incense-cedar. A reviewer fielt that in the Rogue valleys TSHE and ABGR are not present at any cover. The valley a	General Information				
Modeler 2 Tom DeMeo tde me o@fs.fed.us Reviewer Bruce B. Hostetler bhostetler@fs.fed.us Modeler 3 Karen Kopper karen_kopper@nps.gov Reviewer Thomas Atzet bhostetler@fs.fed.us Forest and Woodland 1 Alaska Definition Definition PSME Diterat Basin California Definition South Central PSME Diccal Data California Southeast Southeast ABGR Dexpert Estimate Southeast Southeast Southeast Modulard the south end of the valley. A reviewer suggests that this type is much like the valley aprons around the rog we valleys too, but is decidedly wetter as far as rainfall and species composition. Biophysical Site Description The type occurs in the lower hills of both the Coast range and Cascades. Precipitation averages 50-55 in per year. Elevation 1000-1800 ft. Vegetation Description Wester Event E	Contributors (also see the Comme	ents field) Date	6/13/2004		
Modeler 3 Karen Kopper karen_kopper@nps.gov Reviewer Thomas Atzet jatzet@budget.net Vecetation 1voe 1 Alaska N-Cent.Rockies Dominant Species* General Model Sources Great Basin Pacific Northwes PSME Diliterature Great Basin South Central TSHE Local Data Northeast Southwest ABGR Expert Estimate Northeast Southwest Geographic Range This forested type occurs in the foothills around the rim of the Willamette Valley, Ore gon. It is more abundant at the south end of the valley. A reviewer suggests that this type is much like the valley aprons around the rogue valleys too, but is decidedly wetter as far as rainfall and species composition. Biophysical Site Description The type occurs in the lower hills of both the Coast range and Cascades. Precipitation averages 50-55 in per year. Elevation 1000-1800 ft. Vegetation Description These types commonly include Douglas-fir with western hemlock and grand fir, particularly in later seral stages. Willame the Valley grasses may be present in the post-replacement and open classes. Dry sites may contain Incense -cedar. A reviewer felt that in the Rogue valleys TSHE and ABGR are not present at any cover. The valley aprons are too hot and dry. Disturbance Description Fire Regime III overall. Mix of III and I. Burns more frequently than Douglas-fir-Hemlock. Since the type spans between the freque	Modeler 1 Jane Kertis	jkertis@fs.fed.us	Reviewer	Frank Price	Frank_Price@or.blm.g ov
Yede tation 1 VDE Map Cone Mode 1 Zone Forest and Woodland 1 Alaska N-Cent.Rockies Dominant Species* General Model Sources California Pacific Northwes PSME Disteration California Pacific Northwes SME Disteration South Central South Central TSHE Local Data Southwest Southwest Geographic Range This forested type occurs in the foothills around the rim of the Willamette Valley, Oregon. It is more abundant at the south end of the valley. A reviewer suggests that this type is much like the valley aprons around the rogue valleys too, but is decidedly wetter as far as minfall and species composition. Biophysical Site Description The type occurs in the lower hills of both the Coast range and Cascades. Precipitation averages 50-55 in per year. Elevation 1000-1800 ft. Vegetation Description These types commonly include Douglas-fir with western hemlock and grand fir, particularly in later seral stages. Willame the Valley grasses may be present in the post-replacement and open classes. Dry sites may contain Incense-codar. A reviewer felt that in the Rogue valleys TSHE and ABGR are not present at any cover. The valley aprons are too hot and dry. Disturbance Description Fire Regime III overall. Mix of III and I. Burns more frequently than Douglas-fir-Hemlock. Since the type spans between the frequent fires of the Willame the Valley gr	Modeler 2 Tom De Meo	tdemeo@fs.fed.us	Reviewer	Bruce B. Hostetler	bhostetler@fs.fed.us
Forest and Woodland 1 Alaska N-Cent. Rockies Dominant Species* General Model Sources California Pacific Northwes PSME Dictoral Data South Cental Pacific Northwest PSME Diccal Data South Cental South Cental ABGR Dependent Statute South Cental South Cental TSHE Docal Data South Cental South Cental ABGR Dependent Statute Northeast South Cental This forested type occurs in the foothills around the rim of the Willamette Valley, Oregon. It is more abundant at the south end of the valley. A reviewer suggests that this type is much like the valley aprons around the rog we valleys too, but is decidedly wetter as far as rainfall and species composition. Biophysical Site Description The type occurs in the lower hills of both the Coast range and Cascades. Precipitation averages 50-55 in per year. Elevation 1000-1800 ft. Vegetation Description These types commonly include Douglas-fir with western hemlock and grand fir, particularly in later seral stages. Willamette Valley grasses may be present in the post-replacement and open classes. Dry sites may contain Incense-cedar. A reviewer felt that in the Rogue valleys TSHE and ABGR are not present at any cover. The valley aprons are too hot and dry. Disturbance Description Fire Regime III overall. Mix of III and I. Burns more fr	Modeler 3 Karen Kopper	kare n_kopper@nps.gov	Reviewer	Thomas Atzet	jatzet@budget.net
Dominant Species General Model Sources California Pacific Northwes DSME Cliterature Great Bakes South Central PSME Clical Data South Central Southeast ABGR Expert Estimate Northeast Southeast Bread Date Description Southeast Southeast Bread Date Description Southeast Southeast Biophysical Site Description The type occurs in the lower hills of both the Coast range and Cascades. Precipitation averages 50-55 in per year. Elevation 1000-1800 ft. Vegetation Description The type occurs in the lower hills of both the Coast range and Cascades. Precipitation averages 50-55 in per year. Elevation 1000-1800 ft. Vegetation Description The type occurs in the lower bills of both the Coast range and Cascades. Precipitation averages 50-55 in per year. Elevation 1000-1800 ft. Vegetation Description These types commonly include Douglas-fir with western hemlock and grand fir, particularly in later seral stages. Willamette Valley grasses may be present in the post-replacement and open classes. Dry sites may contain Incense-cedar. A reviewer felt that in the Rogue valleys TSHE and ABGR are not present at any cover. The valley aprons are too hot and dry. Disturbance Description Fire Regime III overall. Mix of III and I. Burns more frequently than Douglas-fir-Hemlock. Since the type spans between t	Vegetation Type	h	apzone	ModelZone	
Dominant Species Ceneral Mode Sources PSME Diliterature ISHE Local Data ABGR Dexpert Estimate Geographic Range Sutheast This forested type occurs in the foothills around the rim of the Willamette Valley, Oregon. It is more abundant at the south end of the valley. A reviewer suggests that this type is much like the valley aprons around the rogue valleys too, but is decidedly wetter as far as rainfall and species composition. Biophysical Site Description They top cocurs in the lower hills of both the Coast range and Cascades. Precipitation averages 50-55 in per year. Elevation 1000-1800 ft. Vegetation Description These types commonly include Douglas-fir with western hemlock and grand fir, particularly in later seral stages. Willamette Valley grasses may be present in the post-replacement and open classes. Dry sites may contain Incense-codar. A reviewer felt that in the Rogue valleys TSHE and ABGR are not present at any cover. The valley aprons are too hot and dry. Disturbance Description Fire Regime III overall. Mix of III and I. Burns more frequently than Douglas-fir-Hemlock. Since the type spans between the frequent fires of the Willamette Valley grasslands and forested hills, the range of fire return is wide. Native American burning may have increased the frequency of fire in certain locations, especially at lower elevations where the grasslands fire regime impinges. In areas where Native American burning may have Tominant Species are from the NRCS PLANTS database.	Forest and Woodland		1		
PSME ☐ Literature ☐ Great Lakes ☐ Southeast TSHE ☐ Local Data ☐ Northeast ☐ Southeast ☐ S. Appalachians ABGR ☑ Expert Estimate ☐ Northeast ☐ S. Appalachians Geographic Range This forested type occurs in the foothills around the rim of the Willamette Valley, Oregon. It is more abundant at the south end of the valley. A reviewer suggests that this type is much like the valley aprons around the rogue valleys too, but is decidedly wetter as far as rainfall and species composition. Biophysical Site Description The type occurs in the lower hills of both the Coast range and Cascades. Precipitation averages 50-55 in per year. Elevation 1000-1800 ft. Vegetation Description These types commonly include Douglas-fir with western hemlock and grand fir, particularly in later seral stages. Willamette Valley grasses may be present in the post-replacement and open classes. Dry sites may contain Incense -cedar. A reviewer felt that in the Rogue valleys TSHE and ABGR are not present at any cover. The valley aprons are too hot and dry. Disturbance Description Fire Regime III overall. Mix of III and I. Burns more frequently than Douglas-fir-Hemlock. Since the type spans between the frequent fires of the Willamette Valley grasslands and forested hills, the range of fire return is wide. Native American burning may have increased the frequency of fire in certain locations, especially at lower elevations where the grasslands fire regime impinges. In areas where Native American burning may have	Dominant Species* General	Model Sources			
TSHE Local Data Northeast S. Appalachians ABGR Expert Estimate Northera Plains Southwest Geographic Range This forested type occurs in the foothills around the rim of the Willamette Valley, Oregon. It is more abundant at the south end of the valley. A reviewer suggests that this type is much like the valley aprons around the rogue valleys too, but is decidedly wetter as far as rainfall and species composition. Biophysical Site Description The type occurs in the lower hills of both the Coast range and Cascades. Precipitation averages 50-55 in per year. Elevation 1000-1800 ft. Vegetation Description These types commonly include Douglas-fir with western hemlock and grand fir, particularly in later seral stages. Willamette Valley grasses may be present in the post-replacement and open classes. Dry sites may contain Incense-cedar. A reviewer felt that in the Rogue valleys TSHE and ABGR are not present at any cover. The valley aprons are too hot and dry. Disturbance Description Fire Regime III overall. Mix of III and I. Burns more frequently than Douglas-fir-Hemlock. Since the type spans between the frequent fires of the Willamette Valley grasslands and forested hills, the range of fire return is wide. Native American burning may have increased the frequency of fire in certain locations, especially at lower elevations where the grasslands fire regime impinges. In areas where Native American burning may have Tominant Species are from the NRCS PLANTS database. To check a species code, please visit http:/plants.usda.gov. "The Reguine Groups are: 10-05 year freq	PSME Lite	erature			
ABGR Deprit Estimate Northera Plains Southwest Geographic Range This fore sted type occurs in the foothills around the rim of the Willamette Valley, Oregon. It is more abundant at the south end of the valley. A reviewer suggests that this type is much like the valley aprons around the rogue valleys too, but is decidedly wetter as far as rainfall and species composition. Biophysical Site Description This fore sted type occurs in the lower hills of both the Coast range and Cascades. Precipitation averages 50-55 in per year. Elevation 1000-1800 ft. Vegetation Description The type scommonly include Douglas-fir with western hemlock and grand fir, particularly in later seral stages. Willamette Valley grasses may be present in the post-replacement and open classes. Dry sites may contain Incense-ordar. A reviewer felt that in the Rogue valleys TSHE and ABGR are not present at any cover. The valley aprons are too hot and dry. Disturbance Description Fire Regime III overall. Mix of III and I. Burns more frequently than Douglas-fir-Hemlock. Since the type spans between the frequent fires of the Willamette Valley grasslands and forested hills, the range of fire return is wide. Native American burning may have increased the frequency of fire in certain locations, especially at lower elevations where the grasslands fire regime impinges. In areas where Native American burning may have 'Dominant Species are from the NRCS PLANTS database. To check a species code, please visit http:/plants.usda.gov. "'Fire Regime Groups are: 1:0-35 year frequency, epiacoment severity; II: 35-100-year frequency, epiacoment severity; II: 35-100-year freq	131115				
This forested type occurs in the foothills around the rim of the Willamette Valley, Oregon. It is more abundant at the south end of the valley. A reviewer suggests that this type is much like the valley aprons around the rogue valleys too, but is decidedly wetter as far as minfall and species composition. Biophysical Site Description The type occurs in the lower hills of both the Coast range and Cascades. Precipitation averages 50-55 in per year. Elevation 1000-1800 ft. Vegetation Description These types commonly include Douglas-fir with western hemlock and grand fir, particularly in later seral stages. Willame the Valley grasses may be present in the post-replacement and open classes. Dry sites may contain Incense-cedar. A reviewer felt that in the Rogue valleys TSHE and ABGR are not present at any cover. The valley aprons are too hot and dry. Disturbance Description Fire Regime III overall. Mix of III and I. Burns more frequently than Douglas-fir-Hemlock. Since the type spans between the frequent fires of the Willame to Valley grasslands and forested hills, the range of fire return is wide. Native American burning may have increased the frequency of fire in certain locations, especially at lower elevations where the grasslands fire regime impinges. In areas where Native American burning may have Tominant Species are from the NRCS PLANTS database. To check a geeies code, please visit http://plants.usda.gov. "'Fire Regime Groups are: 1:0-35 year frequency, replacement severity: 1::3-100- year frequency, replacement severity: 1::3-100- year frequency.	ABGR Exp	pert Estimate		Northern Plain	s Southwest
The type occurs in the lower hills of both the Coast range and Cascades. Precipitation averages 50-55 in per year. Elevation 1000-1800 ft. Vegetation Description These types commonly include Douglas-fir with western hemlock and grand fir, particularly in later seral stages. Willamette Valley grasses may be present in the post-replacement and open classes. Dry sites may contain Incense-cedar. A reviewer felt that in the Rogue valleys TSHE and ABGR are not present at any cover. The valley aprons are too hot and dry. Disturbance Description Fire Regime III overall. Mix of III and I. Burns more frequently than Douglas-fir-Hemlock. Since the type spans between the frequent fires of the Willamette Valley grasslands and forested hills, the range of fire return is wide. Native American burning may have increased the frequency of fire in certain locations, especially at lower elevations where the grasslands fire regime impinges. In areas where Native American burning may have Tominant Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov. "Fire Regime Groups are:1:0-35 year frequency, spitcoment severity; 11: 35-100- year frequency, replacement severity; 12: 35-100- year frequency.	abundant at the south end of the around the rogue valleys too, b	e valley. A reviewer sugg ut is decidedly wetter as:	ests that this	type is much like the	valley aprons
These types commonly include Douglas-fir with western hemlock and grand fir, particularly in later seral stages. Willame the Valley grasses may be present in the post-replacement and open classes. Dry sites may contain Incense -cedar. A reviewer felt that in the Rogue valleys TSHE and ABGR are not present at any cover. The valley aprons are too hot and dry. Disturbance Description Fire Regime III overall. Mix of III and I. Burns more frequently than Douglas-fir-Hemlock. Since the type spans between the frequent fires of the Willame the Valley grasslands and forested hills, the range of fire return is wide. Native American burning may have increased the frequency of fire in certain locations, especially at lower elevations where the grasslands fire regime impinges. In areas where Native American burning may have Tominant Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov. "Fire Regime Groups are: 1:0-35 year frequency, splacement severity; 1:: 35-100- year frequency, replacement severity; 1:: 35-100- year frequency.	The type occurs in the lower hi		e and Cascad	les. Precipitation ave	rages 50-55 in per
are too hot and dry. Disturbance Description Fire Regime III overall. Mix of III and I. Burns more frequently than Douglas-fir-Hemlock. Since the type spans between the frequent fires of the Willame tte Valley grasslands and forested hills, the range of fire return is wide. Native American burning may have increased the frequency of fire in certain locations, especially at lower elevations where the grasslands fire regime impinges. In areas where Native American burning may have Dominant Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov. "Fire Regime Groups are: 10:03 Syear frequency, surface sevently: 11:03 Syear frequency, replacement severity: 11: 35- 100- year frequency, meta severity: 12: 35- 100- year frequency.	These types commonly include stages. Willamette Valley grass				
Fire Regime III overall. Mix of III and I. Burns more frequently than Douglas-fir-Hemlock. Since the type spans between the frequent fires of the Willamette Valley grasslands and forested hills, the range of fire return is wide. Native American burning may have increased the frequency of fire in certain locations, especially at lower elevations where the grasslands fire regime impinges. In areas where Native American burning may have Dominant Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov. "'Fire Regime Groups are: I:0-35 year frequency, surface sevently: I:0-35 year frequency, replacement severity: II: 35- 100- year frequency, mole severity: V: 35-100- year frequency.		ue valleys TSHE and AB	GR are not pi	resent at any cover. I	The valley aprons
elevations where the grasslands fire regime impinges. In areas where Native American burning may have Tominant Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov. "The Regime Groups are: I: 0-35 year frequency, surface seventy; II: 0-35 year frequency, replacement severity; II: 35- 100- year frequency, mole severity; IV: 35-100- year frequency, replacement severity; V: 200- year frequency, the severity in the severity; IV: 35-100- year frequency, replacement severity; V: 200- year frequency, the severity in the severity; IV: 35-100- year frequency, replacement severity; V: 200- year frequency, seplacement, severity; IV: 35- II: 35-100- year frequency, mole severity; IV: 35-100- year frequency, replacement severity; IV: 36- II: 35-100- year frequency, mole severity; IV: 35- II: 35-100- year frequency, mole severity; IV: 35-100- year frequency, replacement severity; IV: 36- II: 35-100- year frequency, mole severity; IV: 35- II: 35-100- year frequency, mole severity; IV: 35-100- year frequency, replacement severity; IV: 36- II: 35-100- year frequency, mole severity; IV: 35- II: 35-100- year frequency, mole severity; IV: 35-100- year frequency, replacement severity; IV: 36- II: 35-100- year frequency, mole severity; IV: 35- II: 35-100- year frequency, mole severity; IV: 35-100- year frequency, replacement severity; IV: 36- II: 35-100- year frequency, mole severity; IV: 35- II: 35-100- year frequency, mole severity; IV: 35-100- year frequency, replacement severity; IV: 36- II: 35-100- year frequency, mole severity; IV: 35-100-100- year frequency, mole severity; IV: 35-100- year frequency, mole severity; IV: 35	Fire Regime III overall. Mix of spans between the frequent fire				
**Fire Regime Groups are: 1:0-35 year frequency, surface severity; II:0-35 year frequency, replacement severity; III: 35- 100+ year frequency, mixed severity; IV:35-100+ year frequency, replacement severity; V: 200+ year frequency,					
	Deminant Concine are from the MDC				

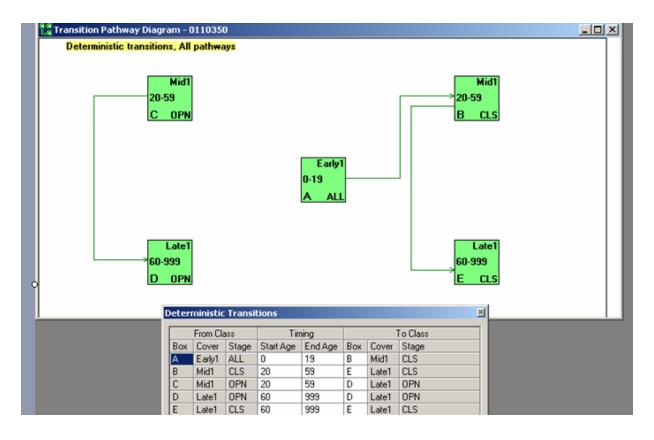
The next section lists the dominant vegetation species, followed by discussions of the geographic range, biophysical site vegetation and disturbance descriptions.

Biophysical Setting: 0110	350 North Woodl		ry Douglas-fir I	Forest and
This BPS is lumped with: This BPS is split into multiple models				
General Information				
Contributors (also see the Comments	ifield) <u>Date</u> 6	13/2004		
Modeler 1 Jane Kertis jk	ertis@fs.fed.us	Reviewer	Frank Price	Frank_Price@or.blm.g
	e me o@fs.fed.us æn_kopper@nps.gov		Bruce B. Hostetler Thomas Atzet	ov bhostetler@fs.fed.us jatzet@budget.net
<u>Vecetation Type</u> Forest and Woodland	М	ap Zone 1	<u>ModelZone</u> ∏Alaska	□N-Cent.Rockies
PSME Literat TSHE Local			California Great Basin Great Lakes Northeast Northern Plains	Pacific Northwest South Central Southeast S. Appalachians
abundant at the south end of the v. around the rogue valleys too, but i Biophysical Site Description The type occurs in the lower hills year. Elevation 1000-1800 ft.	s decidedly wetter as f	ar as rainfall	and species composi	ition.
Vegetation Description These types commonly include De stages, Willamette Valley grasses contain Incense-cedar.				
A reviewer felt that in the Rogue v are too hot and dry.	alleys TSHE and ABO	GR are not pr	esent at any cover. T	'he valley aprons
Disturbance Description Fire Regime III overall. Mix of III spans between the frequent fires o return is wide.				
Native American burning may hav elevations where the grasslands fin				
"Dominant Species are from the NRCS F ""Fire Regime Groups are: I: 0-35 year fr 100+ year frequency, mixed severity; IV: replacement severity.	equency, surface severity	; II: 0-35 year (requency, replacemen	t severity; III: 35-
Sunday, September 02, 2007				Page 22 of 234

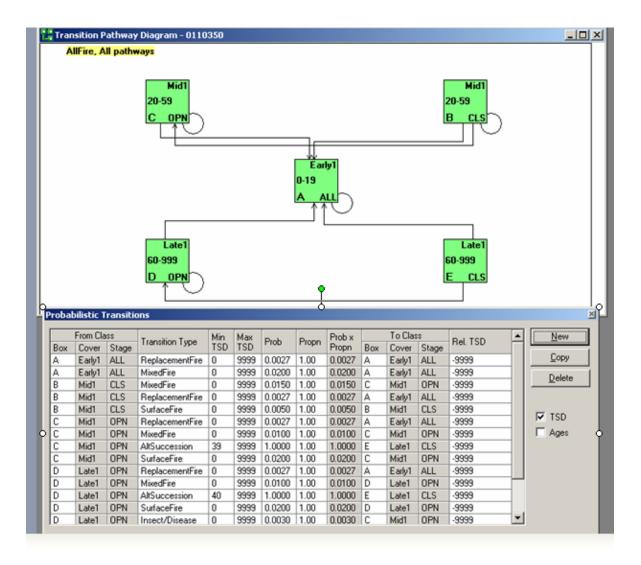
The general information about the BpS continues on the second page. Notice the sections describing BpS adjacency concerns, native uncharacteristic conditions, the scale description, the section provided for recording any issues or problems (none were recorded for this model description), and the section provided for general comments. You should always review the comments section because the modelers often include additional information, such as when two similar models in adjacent zones have unresolved differences for some BpS traits.

-							
	widely spa		hese trees hav			: on savannah-like con ice, with very large lir	
	savannahs	in near-valley locati	ions, suggest	a subset of the	North Pao	of the Douglas-fir sav cific Dry Douglas-fir H to cessation of Native	orest and
	This BpS	or Identification (is affected by fires fr type in the foothills.		ent oak woodla	nd. It bur	ns more frequently the	an the Douglas-fir-
	Native Unc	haracteristic Con	ditions				
	Scale Desc This type	ription occurs in relatively s	amall patches	at low abundar	ice.		
	Issues/Pro	blems					
	foothills, v informed t	while another showed this (021035) model,	d 50-60 in the , and may ref	e Coburg Hills (lect the detection	(not cross on of lowe) in the southern Wills -dated). The cross-dat r severity fires than th	ed fire history
	reviewers As a result return inte	felt that wind storms t of final QC for LAI	s may be sign NDFIRE Nat erity fire wer	ificant e nough t ional by Kori B	to be wort Iankenshi	was added to the curr th modeling. ip, the user-defined mi ere not consistent with	in and max fire
	reviewers As a result return inte return inte	felt that wind storms t of final QC for LAI rivals for surface seve	s may be sign NDFIRE Nat erity fire wer	ificant e nough t ional by Kori B	to be wort Iankenshi	th modeling. ip, the user-defined mi	in and max fire
	reviewers As a result return inte return inte Vegetatio Class A	felt that wind storms t of final QC for LAI rvals for surface sew rval for this fire sew on Classes 5%	s may be sign NDFIRE Nat erity fire wer erity type. Indicato <u>Canopy</u>	ificant enough ional by Kori E e deleted becau or Species' and Position	to be wort Hankenshi Ise they w	th modeling. ip, the user-defined mi	in and max fire h the modeled fire
	reviewers As a result return inte return inte Vegetatio Class A	felt that wind storms t of final QC for LAI rvals for surface sew rval for this fire seve on Classes	s may be sign NDFIRE Nat erity fire wer erity type. Indicato <u>Canopy</u>	ificant enough ional by Kori E e deleted becau or Species' and	to be wort Hankenshi Ise they w	th modeling. ip, the user-defined mi ere not consistent with re Data (for upper layer	in and max fire h the modeled fire lifeform).
	reviewers As a result return inte return inte Vegetatio Class A	felt that wind storms t of final QC for LAI rivals for surface sew rival for this fire seve on Classes 5% opment 1 All Structu	s may be sign NDFIRE Nat erity fire wer erity type. Indicato <u>Canopy</u>	ificant enough ional by Kori E e deleted becau or Species' and Position	to be wort flankenshi ise they w Structu Cover Height	th modeling. ip, the user-defined mi ere not consistent with re Data (for upper layer Man 0% Twe Om	in and max fire the modeled fire lifeform) Max 40% Tree 10m
	reviewers As a result return inte return inte Vegetatio Class A Early Devel Upper Layer Herbao	felt that wind storms t of final QC for LAI reals for surface see real for this fire see on Classes 5% opment 1 All Structu Lifeform	s may be sign NDFIRE Nat erity fire wer erity type. Indicato <u>Canopy</u>	ificant enough ional by Kori E e deleted becau or Species' and Position	to be wort flankenshi ise they w Structu Cover Height	h modeling. ip, the user-defined mi ere not consistent with re Data (for upper layer Min 0 %	in and max fire the modeled fire lifeform) Max 40% Tree 10m
	reviewers As a result return inte return inte Vegetatio Class A Early Develo <u>Upper Layer</u>	felt that wind storms t of final QC for LAI reals for surface see real for this fire see on Classes 5% opment 1 All Structu Lifeform	s may be sign NDFIRE Nat erity fire wer erity type. Indicato <u>Canopy</u>	ificant enough ional by Kori E e deleted becau or Species' and Position	to be wort tlanke nshi ise they w <u>Structu</u> <u>Cover</u> <u>Height</u> <u>Tree Size</u>	th modeling. ip, the user-defined mi ere not consistent with re Data (for upper layer Man 0% Twe Om	in and max fire the modeled fire lifeform). Max 40% Tree 10m 5°DBH
	Reviewers As a result return inte return inte Vegetatio Class A Early Devel Upper Layer Herbao	felt that wind storms t of final QC for LAI revals for surface see vival for this fire see on Classes 5% opment 1 All Structu Lifeform eous	s may be sign NDFIRE Nat erity fire wer erity type. Indicato <u>Canopy</u>	ificant enough ional by Kori E e deleted becau or Species' and Position	to be wort tlanke nshi ise they w <u>Structu</u> <u>Cover</u> <u>Height</u> <u>Tree Size</u>	th modeling. ip, the user-defined mi ere not consistent with re Data (for upper layer Min 0 % Tree 0m e Otass Sapling > 4.5ft; <	in and max fire the modeled fire lifeform). Max 40% Tree 10m 5°DBH
	Reviewers As a result return inte return inte Vegetatio Class A Early Devel Upper Layer Herbao Shrub DTree Description Grasses, for	felt that wind storms t of final QC for LAI revals for surface see vival for this fire seev on Classes 5% opment 1 All Structu Lifeform eous <u>Fuel Model</u>	: may be sign NDFIRE Nati erity fire wer erity type. indicate <u>Canopy</u> Jares PSME sole-sized Do	ificant enough ional by Kori E e deleted becau er Species* and Position Upper	to be wort ilanke nshi ise they w <u>Structu</u> <u>Cover</u> <u>Height</u> Tree Size	th modeling. ip, the user-defined mi ere not consistent with re Data (for upper layer Min 0 % Tree 0m e Otass Sapling > 4.5ft; <	in and max fire in the modeled fire lifeform) Max 40% Tree 10m 5°DBH n dominant life form.
	reviewers As a result return inte return inte Vegetatio Class A Early Devel <u>Uoper Layer</u> Britherbao Shrub Description Grasses, for trees average	felt that wind storms t of final QC for LAI revals for surface see virval for this fire seev on Classes 5% opment 1 All Structu Lifeform eous <u>Fuel Model</u> bs, and seedling to p e 5" dbh and 13 met	i may be sign NDFIRE Nat erity fire wer erity type. Indicato Canopy ares PSME kole-sized Do ers height.	ificant enough ional by Kori E e deleted becau <u>r Species* and Position</u> Upper uglas-fir. Seedl	to be work tanke nshi se they w <u>Structu</u> <u>Cover</u> <u>Height</u> <u>Tree Size</u> Upper	th modeling. ip, the user-defined mi ere not consistent with re. Data (for upper layer Min 0 % Tree 0m a Olass Sapling > 4.5ft; « layer lieform differs fron	in and max fire in the modeled fire <u>lifeform</u>) <u>Max</u> 40% Tree 10m 5*DBH a dominant life form. height, and pole
	reviewers As a result return inte return inte return inte Vegetatio Class A Early Devel Upper Layer Berbao Shrub Tree Description Grasses, for trees averag Succession t also occur. Toominant Sp ""Fre Regime	felt that wind storms t of final QC for LAI revals for surface see virval for this fire seev on Classes 5% opment 1 All Structu Lifeform eous <u>Fuel Model</u> bs, and seedling to p to 5° dbh and 13 met to Class B after 20 you	i may be sign NDFIRE Nat erity fire wer erity type. Indicato Canopy ares PSME kole-sized Do ers height. ears. Replace SPLANTS dd SPLANTS dd	ificant enough i ional by Kori E e deleted becau r Species' and Position Upper uglas-fir. Seedl ment fires (MF ment fires (MF	to be work lanke nshi ise they w Structur Cover Height Tree Size ings avera RI= 370yn k a specie	th modeling. ip, the user-defined mi ere not consistent with re Data (for upper layer Mit 0 % Tree 0m # Oase Sapling >4.5ft; « layer li@form differs from age <1° dbh and <5 m	in and max fire in the modeled fire <u>lifeform</u>). <u>Max</u> <u>40%</u> Tree 10m 5*DBH in dominant life form. height, and pole MIFRI= 50yrs) may plants.usda.gov. seventy; III: 35-
	reviewers As a result return inte- return inte- return inte- Vegetatio Class A Early Devel Upper Laver Bernol Tree Description Grasses, for trees average Succession I also occur. Toomiant Sp "Toomiant Sp	felt that wind storms t of final QC for LAI rvals for surface sew rvral for this fire sev on Classes 5% opment 1 All Structu Lifeform eous <u>Fuel Model</u> bs, and seedling to p e 5° dbh and 13 meb to Class B after 20 y ecles are from the NRR (Groups are: 1: 0-35 ye	i may be sign NDFIRE Nat erity fire wer erity type. Indicato Canopy ares PSME kole-sized Do ers height. ears. Replace SPLANTS dd SPLANTS dd	ificant enough i ional by Kori E e deleted becau r Species' and Position Upper uglas-fir. Seedl ment fires (MF ment fires (MF	to be work lanke nshi ise they w Structur Cover Height Tree Size ings avera RI= 370yn k a specie	th modeling. ip, the user-defined mi ere not consistent with re Data (for upper layer Mit 0 % Tree 0m a Oase Sapling > 4.5ft; « layer lieform differs from age <1° dbh and <5 m rs;) reset. Mixed fires (s code, please visit http:// r frequency. replacement	in and max fire in the modeled fire <u>lifeform</u>). <u>Max</u> <u>40%</u> Tree 10m 5*DBH in dominant life form. height, and pole MIFRI= 50yrs) may plants.usda.gov. seventy; III: 35-

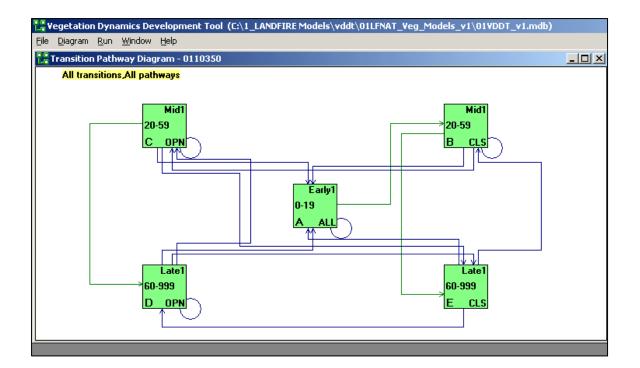
5.3 Vegetation Classes Description


Now let's review the next section, which describes the Vegetation Classes – also known as Succession Classes or S-Classes for short. This section of the description, which ranges from page 22 to page 25, describes not only how many S-Classes were used to characterize this BpS, but also the general descriptive traits and the estimated mean percent of the BpS occupied on the landscape by each S-Class historically. Note that both standard and custom frameworks were used for describing BpS succession classes during the LANDFIRE modeling. For example, modelers often used the five standard succession classes defined by the FRCC Guidebook (Hann and others [2008] at www.frcc.gov), which range from early open-canopy to late closed-canopy successional stages. However, because modelers sometimes chose to diverge from that standard framework, each succession class description should be carefully scrutinized before using the information.

Please review the succession class descriptions in your example BpS before proceeding. Note that we'll explain how the estimated S-Class percentages were derived when you finish reading that section.


OK, now that you've read about the vegetation classes, let's look at how those S-Classes and their estimated percents were derived. As you read about on the landfire.gov website earlier, each BpS was modeled quantitatively, using software called the Vegetation Dynamics Development Tool (VDDT). In short, the LANDFIRE modeling produced quantitative data describing the rates and pathways of succession and the frequency and effects of various types of disturbances. Expert modelers documented not only the descriptive traits for each S-Class, but they also had to "attribute" the VDDT software to develop the parameters for simulating the S-Class percentages.

Specifically, the modelers who developed the North Pacific Dry Douglas-fir Forest and Woodland BpS model used available literature and expert opinion to estimate the succession pathways first without any disturbance. Next, the modelers added in the natural disturbance processes such as fire (surface, mixed, and replacement severity types), insect and disease, wind, and flooding. The graphic below shows the succession pathways as indicated by arrows and the associated transition rates, in years, in the absence of disturbance. Notice, for example, that early succession Class A (labeled "Box A" in the table) progresses to the densely vegetated ("Closed" [CLS]) S-Class B after 19 years in the absence of disturbance.


15

Next, the modelers input their estimates of various disturbance types and their frequency probabilities, as well as the associated succession pathways after those disturbances. Notice that the array of disturbance pathways below is substantially more complex when compared to the non-disturbance pathways in the graphic above. Although a mixed-severity fire frequency of 36 years was used for the BpS as a whole, note that the modelers used widely varying fire severities and frequencies for the individual S-Classes. For example, the first row in the data table below shows a replacement-fire probability for S-Class A of just .0027 – which translates into a fire frequency of about 370 years.

Once all of the attributing had been completed, the modelers ran the software. VDDT conducts multiple non-spatial simulations for 1000-year spans based on the inputs for successional pathways relative to estimated disturbance types and frequencies. The end result, as you saw in the written description, is a mean percentage estimate for each S-Class historically. As you can see from the graphic below, the VDDT modeling produced a complex array of succession classes and successional pathways for this BpS. Note again that the green arrows indicate succession pathways in the absence of disturbance, whereas the blue arrows show the post-disturbance pathways.

(For more information about VDDT and associated training opportunities, visit the ESSA Technologies website at http://www.essa.com/services/forestry/training.htm.)

5.4 Disturbances Section

The next portion of the BpS description documents the various disturbance types. As you can see from the graphic below, the description lists the specific fire severity types (replacement, mixed, surface) and associated frequencies that were used for the VDDT modeling. Also notice the fire regime group (FRG), which is classified based on the overall fire frequency and the dominant fire severity type (Hann and others 2008). In addition, the range of historical fire sizes were recorded whenever such estimates were possible. Also notice the estimated fire intervals for the three fire severity types (*Avg FI, Min FI, Max FI* columns) and the overall fire frequency listed in the *All Fires* row. (Note: To convert the table's fire probabilities into fire frequency, simply divide the integer 1 by the probability value; for example, 1 divided by the .02806 probability value shown in the *All Fires* row yields a 35.64 year fire frequency). As for the other disturbance types, notice that a check was placed

in the Insects/Disease box, indicating that those disturbance types were also used to develop the model.

Class E 30%		ecies* and	Structu	re Data (fo	or upper layer l	lifeform)
Late Development 1 Closed	Canopy Pos				Min	Max
Late Development I Closed		Jpper Aid-Upper	Cover		41%	90%
Upper Layer Lifeform		Aid-Upper	Height		e 25. im	Tree >50.1m
□Herbace ous □Shrub	Abox 1	na-oppa	Tree Siz	e Class	Very Large>33"	DBH
⊡Shrub ☑Tree <u>Fuel Model</u>			□∪pper	layer lifefo	rm differs from	dominant lifeform.
Description						
>40% medium (15" dbh, 25 m tall) and large, ev	en-aged Do	uglas-fir ((20" dbh.	35 ms tall) w	ith some grand fir
and western hemlock in overstory,	little understo	ry.	-			-
Maintains in Class E. Replacement Douglas-fir beetles may occur (me						
	an ie tui n=556	yis) taking (Jui ule of	der dees	and causing u	ansition to crass 12
Disturbances						
ire Regime Group**:	Dealast	AVGH	MIN FI	Max FI	Probability	Percent of AI Fires
listorical Fire Size (acres)	Replacemei Mixed	212	100	400	0.002667	10
Avg 0	Surface	70 90	40	150	0.014286	51 40
Min 0	All Fires	36			0.02806	40
Max 0	Fire Interva				0.02000	
-			in vears fo	oreach fire	severity class	and for all types of
Sources of Fire Regime Data	fire combine	d (Alİ Fires).	Average F	I is centra	itenderícy mod	leied. Minimum and
✓ Lite rature					als, if known. F eference condit	Probability is the ion modeling.
✓ Local Data					that severity da	
✓Expert Estimate						
Additional Disturbances Modeled		_				
	tive Grazing					
Wind/Weather/Stress Co	mpetition	Other (op	tional 2)			
References						
Kertis, J. 2004. Valley fringe fire	e history study	. Unpub. Da	ta on file	, USDA I	Forest Service	. Siuslaw National
Forest, Corvallis, OR.						
Nature Same 2007 Lateration	Eastering' C		Chan da -	. T	al Easter'	Classification
NatureServe. 2007. International NatureServe Central Databases.						Classifications.
The second second second second second	magazi, ere	Louis currer	a ar 01 11	o a cordiar	, 2001.	
Robbins, D. 2005. Temporal and				Frequen	cy in the Sout	hem Willamette
Valley Foothills of Oregon. MS	Thesis, Orego	n State Univ	ersity.			
Weisberg, P.J. 1998. Fire Histor	. Em Basim	and Deco		English Ch	maniana in di-	Control Wester
					tructure in the	Central western
	ton. Oregon 5	tate Onivers	ity. 250 p	<i>ф</i> .		
Oregon Cascades. PhD Dissertat	-					
	-					
Ore gon Cascades. PhD Dissertat	DI ANTO detat	ana Ta cha	ok a speci	as aada <i>c</i> i	ana visit hite-	iniante unde acor
	r frequency, surf	ace severity;	II:0-35 ye	ar frequen	cy, replacemen	t severity; III: 35-

5.5 References Section

The final part of the BpS description lists the literature that was used during the modeling. Note that this listing doesn't necessarily reflect a comprehensive literature search. Rather, the references section merely shows publications that the modelers felt provided the most useful data for modeling purposes.

6. Ancillary Files

6.1 Reference Condition Summary Table

As mentioned, in addition to the BpS descriptions, LANDFIRE also provides a convenient table in the zip file you downloaded earlier. This Excel spreadsheet can serve as a convenient lookup table because it summarizes the major data elements that you just reviewed in the BpS description. Despite a rather cryptic file name (01VDDT_Refcon_v1.csv), the spreadsheet is simply known as the Reference Condition Summary Table.

Note that one table exists for each mapping zone in the U.S. Therefore, users must either scroll through the table or use the *Find* tool to locate a given BpS. For instance, row 5 in the graphic below summarizes the values for our example Douglas-fir BpS. As you can see, the table begins by listing the BpS code and then the model name. The next five columns list the estimated percentages for the various S-Classes (classes A through E). The next column is labeled U, which refers to uncharacteristic S-classes. (Although uncharacteristic S-Classes did not occur historically, that category can be useful for documenting current landscape conditions). And, finally, the far-right column that is labeled *FRG* lists the dominant fire regime group for the BpS.

Microsoft Excel - 01YDDT_Refcon_v1.csv						_ 5	<u>1</u> 2
Eile Edit View Insert Format Iools Data Window Help				Т	ype a question	n for help 🛛 👻 🗕 🗗	,
🗋 📂 🛃 🛃 🎒 🏭 🎘 🗸 🤊 🖌 🗴 🖌 📜 🛄 100% 📼 🎯 📲 Arial	- 10 - J	B Z U	EEE	-a- \$ %	/。 , <≣	🗉 • 🖄 • <u>A</u> •	. 1
A5 v fx 110350		_					
A B	С	D	E	F	G	H I	-
1 Zone BpS BpS Name	A E		C D			FRG	-4
2 110080 North Pacific Oak Woodland	10	- 5	85	0	0	01	
3 110110 Rocky Mountain Aspen Forest and Woodland	25	20	10	30	15	0 111	
4 110180 East Cascades Mesic Montane Mixed-Conifer Forest and Woodland	10	20	5	15	50	0 111	
5 _ 110350 North Pacific Dry Douglas-fir Forest and Woodland	5	10	10	45	30	0 111	
6 110360 North Pacific Hypermaritime Sitka Spruce Forest	5	10	1	10	74	0 🗸	
7 110370 North Pacific Maritime Dry-Mesic Douglas-fir-Western Hemlock Forest	5	15	5	15	60	0	
8 110380 North Pacific Maritime Mesic Subalpine Parkland	95	5	0	0	0	0 🗸	
9 110390 North Pacific Maritime Mesic-Wet Douglas-fir-Western Hemlock Forest	5	15	5	5	70	0 🗸	
10 110411 North Pacific Mountain Hemlock Forest - Wet	1	5	5	4	85	0 🗸	
11 110412 North Pacific Mountain Hemlock Forest - Xeric	15	25	15	5	40	0 🗸	
12 110420 North Pacific Mesic Western Hemlock-Silver Fir Forest	1	4	1	2	92	0 🗸	
13 110450 Northern Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest	10	5	30	45	10	0 1	
14 110460 Northern Rocky Mountain Subalpine Woodland and Parkland	25	20	55	0	0	0	
15 110500 Rocky Mountain Lodgepole Pine Forest	25	45	30	0	0	0 IV	
16 110531 Northern Rocky Mountain Ponderosa Pine Woodland and Savanna - Mesic	10	5	35	45	5	0 1	
17 110532 Northern Rocky Mountain Ponderosa Pine Woodland and Savanna - Xeric	25	5	25	40	5	0	
18 110550 Rocky Mountain Subalpine Dry-Mesic Spruce-Fir Forest and Woodland	5	20	40	25	10	0 111	
19 110560 Rocky Mountain Subalpine Mesic-Wet Spruce-Fir Forest and Woodland	20	10	40	25	5	0 111	
20 110600 East Cascades Oak-Ponderosa Pine Forest and Woodland	10	5	10	65	10	0	
21 110630 North Pacific Broadleaf Landslide Forest and Shrubland	20	80	0	0	0	0 🗸	
22 110650 Columbia Plateau Scabland Shrubland	5	5	90	0	0	0 V	
23 110680 North Pacific Dry and Mesic Alpine Dwarf-Shrubland or Fell-field or Meadow	100	0	0	0	0	0 NA	
24 110700 Rocky Mountain Alpine Dwarf-Shrubland	15	85	0	0	0	0 🗸	
25 110800 Inter-Mountain Basins Big Sagebrush Shrubland	15	35	40	10	0	0	
26 110830 North Pacific Avalanche Chute Shrubland	95	5	0	0	0	0 🗸	
27 110840 North Pacific Montane Shrubland	100	0	0	0	0	0 V	
28 111060 Northern Rocky Mountain Montane-Foothill Deciduous Shrubland	10	65	15	10	0	0	
29 111200 Willamette Valley Upland Prairie and Savanna	10	2	20	66	2	0	
30 111230 Columbia Plateau Steppe and Grassland	5	80	15	0	0		_
31 111240 Columbia Plateau Low Sagebrush Steppe	10	40	50	0	0	0	
32 111250 Inter-Mountain Basins Big Sagebrush Steppe	15	30	35	20	0	0 111	
33 111260 Inter-Mountain Basins Montane Sagebrush Steppe	20	15	35	20	10	0	
34 111350 Inter-Mountain Basins Semi-Desert Grassland	20	80	0	0	0		
35 111380 North Pacific Montane Grassland	2	98	0	0	0	0 V	
(↓) ► ► O1VDDT_Refcon_v1	I.					•	
Ready			Sun	n=110450			

6.2 Metadata

The remaining file that downloads in the zip file with the description and the reference condition summary table contains the metadata. Metadata are the same for all mapping zones and will help you understand the characteristics of this LANDFIRE product. Please take a moment to briefly skim the metadata document to familiarize yourself with its contents.

Summary

In summary, you first learned what biophysical settings and the LANDFIRE BpS models are. You then learned the purpose of the models and associated

descriptions. We then discussed some background information regarding how they were created. After that, you learned how to obtain the models and descriptions. And finally, you learned about the various elements contained within the descriptions as well as the ancillary material that is provided with them in the downloaded zip file.

We hope you found this document informative and useful for your future work. Lastly, we welcome your comments or questions – send to <u>helpdesk@niftt.gov</u>.

References

Hann, W.; Shlisky, A.; Havlina, D.; Schon, K.; Barrett, S.; DeMeo, T.; Pohl, K.; Menakis, J.; Hamilton, D.; Jones, J.; Levesque, M.; Frame, C. 2004. Interagency Fire Regime Condition Class Guidebook. Last update January 2008: Version 1.3.0 [Homepage of the Interagency and The Nature Conservancy fire regime condition class website, USDA Forest Service, US Department of the Interior, The Nature Conservancy, and Systems for Environmental Management]. [Online]. Available: www.frcc.gov.